

Nuevos fármacos antivirales e inmunoestimulantes para el tratamiento del VHB.

Maria Buti, MD, FAASLD Hospital Universitari Valle Hebron and CIBEREHD Barcelona. Spain

Disclosures

- Speaker and Advisory for Abbvie and Gilead Sciences
- Advisory for Altimmune, Arbutus, Assembly. GSK, and Immunocore

Circulating viral particles

Van Bommel et al, Hepatology 2015; Hu et al, J Viral Hepatitis 2015

Staging of chronic hepatitis B infection

• Chronic HBV infection is a dynamic process reflecting the interaction between HBV replication and the host immune response

	HBeAg	positive	HBeAg	negative	
	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
	Chronic HBV infection	Chronic hepatitis B	Chronic HBV infection	Chronic hepatitis B	Resolved HBV infection
HBsAg	High	High/ intermediate	Low	Intermediate	Negative
HBeAg	Positive	Positive	Negative	Negative	Negative
HBV DNA	>10 ⁷ IU/mL	10 ⁴ –10 ⁷ IU/mL	<2,000 IU/mL*	>2,000 IU/mL	<10 IU/mL‡
ALT	Normal	Elevated	Normal	Elevated [†]	Normal
Liver disease	None/minimal	Moderate/ severe	None	Moderate/ severe	None [§]
Old terminology	Immune tolerant	Immune reactive HBeAg positive	Inactive carrier	HBeAg negative chronic hepatitis	HBsAg negative /anti-HBc positive

*HBV DNA levels can be between 2,000 and 20,000 IU/mL in some patients without signs of chronic hepatitis;

[†]Persisitently or intermittently, based on traditional ULN (~40 IU/L); [‡]cccDNA can frequently be detected in the liver;

§Residual HCC risk only if cirrhosis has developed before HBsAg loss.

HBc: hepatitis b core; HCC: hepatocellular carcinoma; ULN: upper limit of normal

EASL. J Hepatol 2017;67:370-98

Evolution of Treatment for HBV

The Current Therapies

PROS

- Oral drugs
- Suppression of viral replication
- Good safety profile
- Indications
 - HBeAg+ve&-ve
 - Chronic Hepatitis B, Cirrhosis and Decompensated Cirrhosis

CONS

- Long-Term therapy
- Low HBsAg clearance rate
- Risk of Hepatocelullar Carcinoma
- Not indicated
 - Chronic HBV infection (immunotolerant and inactive carriers)

Goals of HBV Therapy

7

EASL Guidelines Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Goals of Phase II/III studies with new HBV compounds

Emerging Treatment Targets for HBV

►/日⇒

Pathways to Achieving Functional Cure

Vebicorvir and a NUC for 76 weeks in HBeAg-positive or –negative patients with CHB (Phase 2 study)

HBeAg positive patients Treatment-naive patients HBV DNA reduction HBV pgRNA reduction VBR + ETV Mean HBV pgRNA (log10 U/ml) VRR + FTV Mean HBV DNA (log10 IU/ml) Placebo + ETV Placebo + ETV VBR + ETV VBR + ETV 6 Difference in HBV pgRNA at week 24 : p = 0,002 6-5 5-4 4-Difference in HBV DNA at week 24 : p = 0,048 3-2 2-LLOQ LLOQ 0 2 4 8 12 16 20 24 26 28 32 36 40 44 48 52 56 60 64 68 72 0 2 4 8 12 16 20 24 26 28 32 36 40 44 48 52 56 60 64 68 72 Treatment week

Viral suppressed HBeAg negative*

All HBV DNA and pgRNA undetectable at week 72 Most patients decrease HBcrAg and **HBsAg** levels

Change from baseline for individual patients

Treatment week

Viral response and safety following discontinuation of vebicorvir and NUC in patients with HBeAg-positive or -negative CHB

it usinL

0 4 8

12 16 20 24 28 32

Off-Insteart Week

36 40

36 40

Virologic outcomes after VBR+NUC cessation	eAg- (n=23)	eAg+ (n=18)
SVR (HBV DNA < 20 IU/mL)	0	0
Relapse at post-treatment Wk 4	16 (70)	17 (94)
Relapse at post-treatment Wk 12	3 (13)	1 (6)
Relapse at post-treatment Wk 16	4 (17)	0
HBV DNA <2000 (3.3 Log ₁₀) IU/mL and ALT <2×ULN	6 (26) 5 (22)	1 (6) 1 (6)
HBV DNA <80,000 (4.9 Log_{10}) IU/mL for ≥8 wks and ALT <2×ULN	10 (43) 8 (35)	7 (39) 6 (33)
Restarted NUC, n (%)	15 (65)	14 (78)
Mean (range) time to follow-up, wks	34 (26–39)	30 (16–39)

- No patients achieved SVR
- No patients experienced HBsAg loss
- Adverse events after D/C ALT elevations in 10%

Gane E, et al. EASL 2021. #PO-482

12

16 20 24 26 32

CIPLtreatment Weel

0

Pathways to Achieving Functional Cure

Repeat dosing of the GalNAc-siRNA AB-729 in patients with CHB results in robust and sustained HBsAq suppression

20 non-cirrhotic, HBeAg positive or negative, NAs virologically-suppressed CHB received AB-729 60mg every 4 weeks (Q4W, Cohort E, N=7), 60mg every 8 weeks (Q8W, Cohort F, N=7), or 90mg Q8W (Cohort I, N=6) through Week 24

Differences in mean HBsAg response between AB-729 doses and dosing intervals to date

Mean (range) ∆HBsAg with	repeat dosir	ng of AB-729
-------------	---------------	--------------	--------------

Visit	AB-729 60 mg Q4W	AB-729 60 mg Q8W	AB-729 90 mg Q8W	P value
Week 16	-1.44 (-0.71 to -1.95)	-1.39 (-1.61 to -1.08)	-1.63 (-0.89 to -2.44)	≥0.4
Week 24	-1.84 (-0.99 to -2.31)	-1.57 (-1.24 to -2.01)	-1.79 (-1.22 to -2.46)	≥0.2
Week 32	-1.84 (-0.94 to -2.36)	-1.68 (-1.37 to -2.15)		0.5
Week 40	-1.84 (-0.88 to -2.47)	-1.74 (-1.40 to -2.14)	<u>ii</u>	0.7
Week 48	-1.86 (-0.91 to -2.44)			

- AB-729 repeat dosing appears safe and well tolerated. Injection site main Aes
- Robust mean declines in HBsAg were sustained with repeat dosing most subjects reaching HBsAg <100 IU/mL</p>
- No differences observed between doses and dose interval

Yuen MF, et al. EASL 2021. #LBO-2764

Inhibition of HBsAg in patients with CHB by siRNA AB-729 is accompanied by upregulation of HBV-specific T-cell activation markers

3. HBsAg reduction and upregulation of HBV-specific T-cell activation markers after multiple doses of AB-729

4. ALT elevations preceded or coincided with HBV-specific T-cell IFN-y production

Thi EP, et al. EASL 2021. #PO-2823

Potential to treat for longer duration and facilitate the recovery of the host immune response

Phase 2a, randomized, double-blind, placebo-controlled study for patients with CHB treated with GSK3228836

1. HBsAg response observed at Day 29

2. Correlation of HBsAg reduction and ALT increases in patients receiving GSK3228836 300 mg

≤0.5 Log₁₀ HBsAg reduction at D29 >0.5 Log₁₀ HBsAg reduction at D29 Open circle: 300 mg with NUC Blue: Patients with high ALT at BL Red: <0.2 Log₁₀ HBsAg decline

Pathways to Achieving Functional Cure

Efficacy and Safety of Oral TLR8 Agonist Selgantolimod (GS-9688, SLGN) in Viremic CHB Patients

Phase 2, randomized, double-blind, placebo-controlled study

HBsAg and HBeAg Loss at Week 48

		Placebo		S	LGN 1.5 m	g		SLGN 3 mg	J
Patients, n (%)	HBeAg+ n=5	HBeAg- n=4	Total n=9	HBeAg+ n=10	HBeAg- n=10	Total n=20	HBeAg+ n=9	HBeAg- n=10	Total n=19
HBsAg loss	0	0	0	0	1 (10)	1 (5)	0	1 (10)*	1 (5)
HBeAg loss	0	-	0	1 (10)*	-	1 (5)	2 (22)	-	2 (10)
HBV virologic breakthrough [†]	0	0	0	0	0	0	0	0	0

*Outcome achieved by Week 24 and sustained at Week 48; ¹Defined as 2 consecutive visits of HBV DNA ≥69 IU/mL.

Janssen HLA, et al. EASL 2021. #2429. https://clinicaltrials.gov/ct2/show/NCT03615066

Individual HBsAg Change From Baseline At Week 24 and 48

SLGN was safe and well tolerated HBsAg declines of ≥0.5 log IU/mL were observed in SLGN patients out to week 48

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.

Restoration of HBV-specific immune responses with therapeutic vaccine BRII-179 (VBI-2601) in chronic HBV patients in a phase 1b/2a study

- BRII-179 (VBI-2601), a virus-like particle-based therapeutic vaccine, high dose of all 3HBV envelope proteins (Pre-S1, Pre-S2, and S)
- Assess the safety, immunogenicity, and early antiviral activity of BRII-179 (VBI-2601) with or without admixing low dose of IFN-α

- In CHB patients under Nrtl therapy, BRII-179 (VBI-2601) \pm IFN- α exhibited a good safety and tolerability profile
- A limited number of doses of BRII-179 (VBI-2601) containing S, Pre-S1 and Pre-S2 antigens induced HBV-specific B- and T-cell responses in CHB patients
- Restoration of HBV immune responses did not modify HBsAg levels during the study

*Participants in Cohort A could also participate in Part 2 of the study. Patients in all other cohorts could not enter another study cohort; [†]In deltoid muscle of left or right arm (alternated between immunizations). Ma H, et al. ILC 2021; PO-2575

How to use the emerging HBV therapy?

Efficacy and Safety of the siRNA JNJ-3989 and/or the Capsid Assembly Modulator JNJ-6379 for the Treatment of Chronic Hepatitis B: REEF 1 study

REEF-1: HBsAg Over Time

- · A dose dependent response to JNJ-3989 (siRNA) was observed
- JNJ-3989 200 mg (highest dose) arm at Week 48:
 - 19.1% patients met primary endpoint (NA stopping criteria)
 - Greatest reduction of HBsAg levels from baseline (2.6 log₁₀ IU/mL)
 - 74.7% of achieved HBsAg <100 IU/mL</p>
- · All regimens within this long-term study were generally well tolerated and safe

Yuen M-F et al. AASLD 2021

Preliminary on-treatment 12 weeks data on VIR-2218 (siRNA) in combination with pegIFNα2a in patients with CHB: Phase 2 study

Yuen MF, et al. AASLD 2021

Concurrent Initiation of VIR-2218 and PEG-IFNα Combination Achieved Greatest Reductions in HBsAg Through Week 24

	Cohort 1	Cohort 2	Cohort 3	Cohort 4	
	VIR-2218 only	VIR-2218 lead-in + PEG-IFNα (12 wk)	VIR-2218 + PEG-IFNα (24 wk)	VIR-2218 + PEG-IFNα (≤ 48 wk)	
Week 4, n	15	15	17	13	
Mean Change in HBsAg (log ₁₀ IU/mL)	-0.51	-0.51	-0.92	-1.01	
Week 12, n	14	15	16	11	
Mean Change in HBsAg (log ₁₀ IU/mL)	-1.39	-1.42	-1.98	-2.05	
At Week 24, n	15	15	13	9	
Mean Change in HBsAg (log ₁₀ IU/mL)	-1.89	-2.03	-2.55	-2.30	
HBsAg change from baseline at Week 24 (log ₁₀ IU/mL)	-1 - -2	0	0 - 0 - 0 - 1 - 11 - 22333 -	HBeAg-negative * HBeAg-positive	
Participants n (%)	Cohort 1 (N=15)	Cohort 2 (N=15)	Cohort 3 (N=18)	Cohort 4 (N=16)	
	VIR-2218 only	VIR-2218 lead-in + PEG-IFNα (12 wk)	VIR-2218 + PEG-IFNα (24 wk)	VIR-2218 + PEG-IFNα (≤ 48 w	
ALT elevation					
Grade 1	2 (13.3)	12 (80.0)	12 (66.7)	11 (68.8)	
		1 (0 7)	2 (11 1)	0	
Grade 2	0	1 (6.7)	2(11.1)	0	

- These data demonstrate that the antiviral activity of VIR-2218 can be potentiated by PEG-IFNα and support future evaluation of combination with novel immunomodulators
- Based on the proportion of participants achieving HBsAg < 10 IU/mL at Week 24, PEG-IFNα treatment for > 24 weeks may achieve higher rates of HBsAg loss

Summary

- Majority of emerging HBV therapies are in phase II/I and preclinical
- Selected patients with Chronic Hepatitis B (age, small percentage of cirrhosis, no comorbidities)
- Several studies with new drugs show an increase viral suppression and reduction in HBsAg levels
- Partial modulation of Immune response
- Safety seems relatively good
- Very few data on off- treatment response to support finite duration of therapy
- New drug combinations studies are on-going and will help on the desing of better strategies