Progress in HIV Therapy

Joel Gallant, MD, MPH Executive Director, HIV Medical Affairs Gilead Sciences, Inc.

- Goals and evolution of antiretroviral therapy
- The importance of resistance barrier
- The effect of M184V/I
- Drug safety and tolerability

Outline

- Goals and evolution of antiretroviral therapy
- The importance of resistance barrier
- The effect of M184V/I
- Drug safety and tolerability

Goals of HIV Therapy

- Indefinitely maintain suppression of plasma HIV RNA levels below the level of detection of sensitive of HIV RNA assays – FDA Guidance¹
- Maximal and durable suppression of plasma viremia delays or prevents the selection of drug-resistance mutations, preserves or improves CD4 count, and confers substantial clinical benefits – DHHS Guidelines²

- 1. DHHS & FDA CDER. Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment Guidance for Industry. November 2015. Available at: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM355128
- 2. DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. October 2017. Available at: http://aidsinfo.nih.gov/guidelines

Evolution of HIV Treatment

 Shift from monotherapy to triple therapy based on more durable suppression with prevention of resistance development

Outline

- Goals and evolution of antiretroviral therapy
- Barrier to resistance
- The effect of M184V/I
- Drug safety and tolerability

Paradigm Shift: Preventing Resistance

Double-blind, randomized trial in ART-naïve HIV-infected adults comparing NFV vs LPV/r both with NRTIs of d4T + 3TC at Week 108¹

- DHHS Guidelines recognize the importance of resistance barrier in justification of LPV/r's preferred status²
 - 2003: trial data for virologic potency, patient tolerance, and pill burden
 - 2004: trial data for virologic potency, <u>barrier to virologic resistance</u>, patient tolerance

^{1.} Kempf D, et al. J Infect Dis. 2004 Jan 1;189(1):51-60. DOI: 10.1086/380509

^{2.} DHHS. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. November 2003 & October 2004. Available at: <u>https://aidsinfo.nih.gov/guidelines/archive/adult-and-adolescent-guidelines</u>

Study Design

- 1. Walmsley S, et al. N Engl J Med 2013. 369(19):1807-18. DOI: 10.1056/NEJMoa1215541
- 2. Walmsley S, et al. J Acquir Immune Defic Syndr. 2015;70(5):515-9. doi: 10.1097/QAI.000000000000790.
- 3. Raffi F, et al. Lancet. 2013 Mar 2;381(9868):735-43. doi: 10.1016/S0140-6736(12)61853-4

SINGLE and SPRING²

Resistance Consequences of Virologic Failure

SPRI

SINGLE	DTG + ABC/3TC (n=414)	EFV/TDF/FTC (n=419)		
Participants with PDVF, n	25	25		
NRTI major mutations, n	0	1		
NNRTI major mutations, n	0	6		
INSTI major mutations, n	0	0		

	SPRING ²	DTG QD + 2 NRTIs (n=411)	RAL BID + 2 NRTIs (n=419)		
~9	Participants with PDVF, n	22	29		
<u> </u>	NRTI major mutations, n	0	4		
	INSTI major mutations, n	0	1		

No integrase mutations or major RT mutations detected on DTG + 2 NRTIs through Week 96

- 1. Walmsley S, et al. CROI 2014. Boston, MA. Poster#543
- 2. Walmsley S, et al. J Acquir Immune Defic Syndr. 2015;70(5):515-9. doi: 10.1097/QAI.000000000000790.
- 3. Raffi F, et al. Lancet. 2013 Mar 2;381(9868):735-43. doi: 10.1016/S0140-6736(12)61853-4

Study Design

Retrospective analysis of VACH cohort - a prospective multicenter Spanish cohort

Endpoints

- Time to non-persistency (all cause discontinuation)
 - Compared for STR vs. multi-tablet regimens since newest STR was available (May 2016)
- Time to virological failure (based on clinician diagnosis in chart)
- Time to adverse events leading to discontinuation

Methods

Kaplan-Meier curves and Cox proportional hazard models

VACH Cohort - Spain

Clinical Experience: 2-Drug Combinations vs Triple Therapy Discontinuation for Any Reason

Retrospective analysis of a large Spanish cohort (n= 9243) to compare the real-world persistence, efficacy, and toxicity of DTG and PI containing 2-Drug Combinations (2DC; n=1872) vs. INSTI containing Triple Therapy (TT; n=7371) in treatment experienced patients (2012-2016)

3-Drug Regime (n=7371)	n	n (%)	
DTG + (ABC	C/3TC or TDF/FTC)	3090 (42%)	
EVG/c + (TAF	/FTC or TDF/FTC)	2966 (40%)	– _ Risk of Discontinuation for Any Reaso
RAL + (AB	C/3TC or TDF/FTC)	1315 (18%)	 Overall: 29% higher for 2DC vs TT
2-Drug Regime (n=1872)	n	n (%)	 Adjusted HR=1.29; p<0.0001 DTG analysis: 49% higher risk with 21
DRV or LPV	3TC	643 (34%)	 Adjusted HR=1.49; p=0.0001
DRV or LPV	RPV	207 (11%)	_ , , , ,
DRV or LPV	RAL	334 (18%)	
DTG	DRV	249 (13%)	
DTG	3TC	146 (8%)	
DTG	RPV	293 (16%)	_

* Kaplan-Meier curves and Cox proportional hazard models controlled for demographics, comorbidities, viral load, CD4, number of previous regimens, CD4 nadir and years on antiretroviral therapy – all at patient-regimen initiation

VACH Cohort – Spain

Clinical Experience: 2-Drug Combinations vs Triple Therapy Virologic Failure and Toxicity

Retrospective analysis of large cohort (n= 9243) to compare real-world persistence, efficacy, and toxicity of DTG and PI containing 2DC (n=1872) vs. INSTI TT (n=7371) in ART experienced patients (2012-2016)

Risk of Virologic Failure

- Significantly higher with 2DC vs TT
 - 2-fold higher overall and 3-fold higher with DTG (both p < 0.0001)

Risk of Toxicity (Intolerance or AEs)

- No differences was observed after controlling for demographic and clinical characteristics
 - Overall (p=0.16) and DTG analyses (p=0.99)

"In this analysis of 9262 recent patient-regimens, probability of remaining free of

and/or PI/r containing Dual Therapy, with no trade-offs in toxicity."

aHR: adusted HR; 2DC: 2-drug combinations; TT: triple therapy Teira R, et. al. EACS 2017. Milan, Italy. PE9/33

* Kaplan-Meier curves and Cox proportional hazard models controlled for demographics, comorbidities, viral load, CD4, number of previous regimens, CD4 nadir and years on antiretroviral therapy – all at patient-regimen initiation

Outline

- Goals and evolution of antiretroviral therapy
- Barrier to resistance
- The effect of M184V/I
- Drug safety and tolerability

European HIV cohorts (ARCA, ICONA, ANRS CO3, ATHENA, SHCS) Impact of M184V/I on DTG/ABC/3TC Efficacy in Virologically Suppressed Adults

Evaluation of effect of M184V/I in 1626 virologically suppressed adults switching to DTG/ABC/3TC with available genotype followed until first virological failure (VF) with pre-VF blips documented from 5 prospective European HIV cohorts

- Overall, only 21 patients had protocol-defined virologic failure during the study (1.29%), which may preclude generalizability
 - VF rates and incidence were numerically higher with M184V/I (both p=NS)

European HIV cohorts (ARCA, ICONA, ANRS CO3, ATHENA, SHCS) Impact of M184V/I on DTG/ABC/3TC Efficacy in Virologically Suppressed Adults

Evaluation of effect of M184V/I in 1626 virologically suppressed adults switching to DTG/ABC/3TC with available genotype followed until first virological failure (VF) with pre-VF blips documented from 5 prospective European HIV cohorts

- No significant difference in the VF risk among those with or without M184V/I
- Unable to exclude or confirm possibility of effect of M184V/I on VF risk
- Trend of increased VF risk with M184V/I

 The effect of M184V/I reaches statistical significance in univariate analysis (HR 1.9, CI 1.1-3.3, p=0.02) but not multivariate analysis (HR 1.6, CI 0.4-5.6, p=0.44)

Impact of M184V & TAMs on 3TC, TDF and ABC Susceptibility

TDF was more likely than ABC to retain antiviral activity in the presence of TAMs and M184V

M184V/I Resistance Tests Differences

Multicenter, open-label, single arm study of suppressed adults with M184V/I switching to E/C/F/TAF from FTC/TDF or ABC/3TC + third agent (n=37)

Less than 1/2 of study participants' M184V/I were detected by proviral DNA (archive) vs historical genotype resistance testing

1. Perez-Valero I, et al. AIDS 2018. Amsterdam, Netherlands. Oral #TUAB0104.

2. Monogram Biosciences. HIV Genotypic Testing. July 2018. https://www.monogrambio.com/hiv-tests/genotypic-assays

3. Monogram Biosciences. GenoSure Archive. July 2018. https://www.monogrambio.com/hiv-tests/suppression-management/genosure-archive

4. Monogram Biosciences. HIV Ordering Procedures. July 2018. https://www.monogrambio.com/contact-support/ordering/sample-handling.

Outline

- Goals and evolution of antiretroviral therapy
- Barrier to resistance
- The effect of M184V/I
- Drug safety and tolerability

Study Design

Integrated analysis of 26 Phase 2/3 Clinical Trials (N=10,330) representing exposure totaling 12,519 person-years (py) to TAF, 5947 py to TDF, and 1029 py to ABC

			TAF. n=6360	TDF. n=2962	ABC. n=1008	Total, N=10.330
Primary outcomes	Patient-years (py) of exposure		12,519	5,947	1,029	19,495
(N=26 trials 10.330 participants)	Age, years		41 (7, 80)	42 (18, 79)	45 (18, 82)	42 (7, 82)
	Sex, n (%)	Male	4966 (78)	2436 (82)	862 (86)	8264 (80)
• PRI		Female	1394 (22)	526 (18)	146 (15)	2066 (20)
Discontinuations due to	Race, n (%)	White	3796 (60)	1884 (64)	687 (68)	6367 (62)
renal AEs		Black	1799 (28)	739 (25)	267 (27)	2805 (27)
Secondary outcomes (N=10 trials; n=3 naïve [2362 participants],		Asian	373 (6)	181 (6)	25 (3)	579 (6)
		Native Hawaiian or Pacific Islander	24 (<1)	8 (<1)	2 (<1)	34 (<1)
		American Indian or Alaska Native	30 (1)	19 (1)	6 (1)	55 (1)
n=/ suppressed		Other	322 (5)	126 (4)	18 (2)	466 (5)
[5300 participants])		Not collected*	16 (<1)	5 (<1)	3 (<1)	24 (<1)
 Treatment-emergent renal AEs* 	Ethnicity, n (%)	Hispanic or Latino	1188 (19)	537 (18)	159 (16)	1884 (18)
• SCr (mg/dL)	Treatment status, n (%)	Naive	2191 (34)	975 (33)	315 (31)	3481 (34)
 eGFR by Cockcroft-Gault (CrCl; mL/min) 		Experienced	4169 (66)	1987 (67)	693 (69)	6849 (66)
Treatment-emergent total proteinuria (dipstick)UACR	eGFR (CrCl), mL/min		108.8 (91.2, 129.6)	107.7 (90.9, 128.4)	108.0 (89.4, 129.7)	108.6 (91.0, 129.3)
Tubular proteinuria	eGFR, Schwartz, mL/min/1.73 m ²		153.3 (136.1, 170.9)			153.3 (136.1, 170.9)

Data are median (interquartile range) or n (%), except for age, which is median (range). *Race data collection not permitted by jurisdiction. eGFR, Schwartz, estimated glomerular filtration rate by the Schwartz formula (pediatric individuals only).

(urine RBP:Cr and β2M:Cr)

19

Renal Safety of TAF vs. TDF and ABC in a Pooled Analysis of 26 Phase 2/3 Clinical Trials

PRT and Renal AEs Leading to Discontinuation: TAF vs. TDF and ABC

- There were no cases of PRT or Fanconi syndrome that occurred after 12,519 py of exposure to TAF vs 10 cases after 5947 py of exposure to TDF (p <0.001)
- Fewer participants discontinued for renal AEs on TAF vs TDF (3 vs 16, p < 0.001)</p>
 - The 3 events in the TAF arm included acute renal failure, interstitial nephritis, and acute kidney failure, none of which were considered related to study drug by the investigators

PRT, proximal renal tubulopathy Differences between treatment groups compared using Fisher exact test

Gupta S, et al. AIDS 2018. Amsterdam, NL. Poster TUPEB113

Renal Biomarkers: TAF vs. TDF

Treatment-Emergent Proteinuria By Dipstick

Participants with Proteinuria, %	TAF	TDF	P-Value	Participants with Proteinuria, %	TAF	TDF	P-Value
Week 48	29% (345/1176)	37% (319/865)	<0.001	Week 48	24% (538/2287)	26% (460/1794)	0.12
Week 96	36% (307/862)	41% (354/865)	0.02	Week 96	28% (636/2287)	31% (561/1794)	0.02

Renal biomarkers favored TAF vs. TDF in both

treatment-naïve and virologically suppressed participants

Renal Biomarkers: TAF vs. TDF

Renal Biomarkers: TAF vs. ABC

Renal biomarkers were similar or more favourable for TAF vs. ABC

Results: Change in Spine and Hip BMD Through Week 144*

- Through Week 144, significantly greater losses in spine and hip BMD in TDF group
- No D/C due to bone AEs in TAF arm vs 6 in TDF arm

*p-value calculated using analysis of variance model including treatment as a fixed effect. Arribas JR, J Acquir Immune Defic Syndr. 2017 Jun 1;75(2):211-218. doi: 10.1097/QAI.00000000001350.

Changes in Spine and Hip BMD through Week 96

Switching to E/C/F/TAF from a regimen containing FTC/TDF + 3rd agent resulted in progressive increase in spine and hip BMD over 96 weeks

Fasting Lipids through Week 144

 Participants on E/C/F/TAF had greater increases in TC, LDL, and HDL than those on E/C/F/TDF, with no difference in rate of initiation of lipid-modifying agents (E/C/F/TAF: 5.5% [n=48]; E/C/F/TDF: 5.8% [n=50])

Arribas JR, J Acquir Immune Defic Syndr. 2017 Jun 1;75(2):211-218. doi: 10.1097/QAI.00000000001350.

"TAF seems to be not only less toxic than TDF but also similar to ABC with regard to renal and bone safety...*The idea that NRTIs are inevitably toxic drugs is no longer true.* Besides 3TC and FTC, TAF, and, possibly, ABC can be safely administered to most patients with HIV. *The search for a less toxic pair of nucleosides could be reaching its end.*"

-Vivancos MJ, Moreno S. Lancet HIV 2018

Advantages of TAF-Based Triple Therapy

- Years of experience in clinical trials and observational studies
- No proximal tubulopathy or bone toxicity in clinical trials, with improvement in renal and bone parameters after switch from TDF
- Less virologic failure and resistance with triple therapy vs. 2DC in observational cohort studies
- Activity against HBV in coinfected patients
- Some regimens appropriate for "rapid start" protocols

Arribas JR, J Acquir Immune Defic Syndr. 2017;75:211-218.

DeJesus E, AIDS Res Hum Retroviruses, 2018;34:337-342.

Teira R, et. al. EACS 2017. Milan, Italy. PE9/33