SNC e Infección VIH

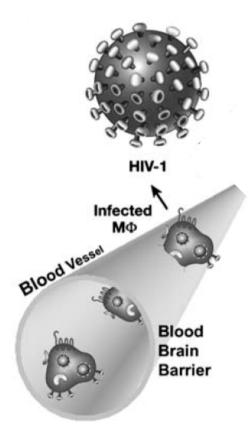
Scott Letendre, M.D.

Professor of Medicine and Psychiatry University of California, San Diego

Disclosures

Research awards were paid to UC San Diego on behalf of Dr. Letendre:

- National Institutes of Health
- Gilead Sciences


Dr. Letendre was paid as an advisor:

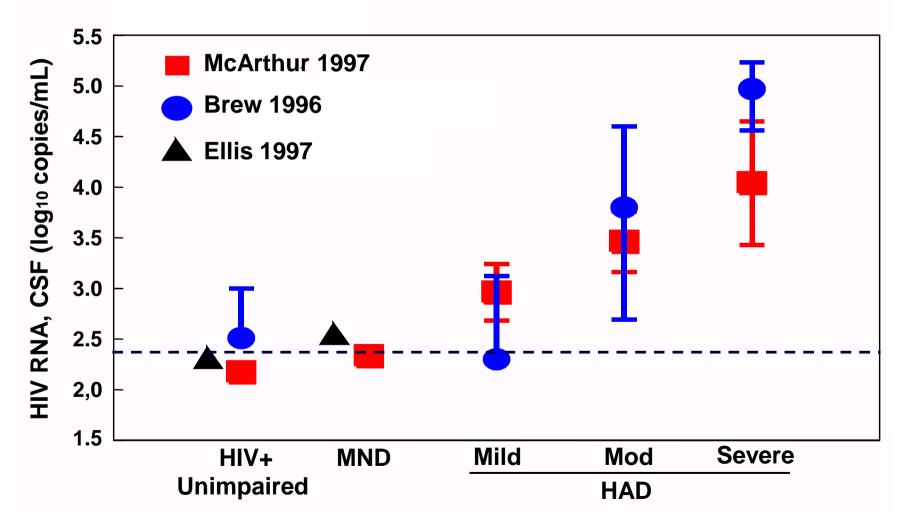
- Merck & Co., Inc.
- ViiV Healthcare

Dr. Letendre was paid as a lecturer:

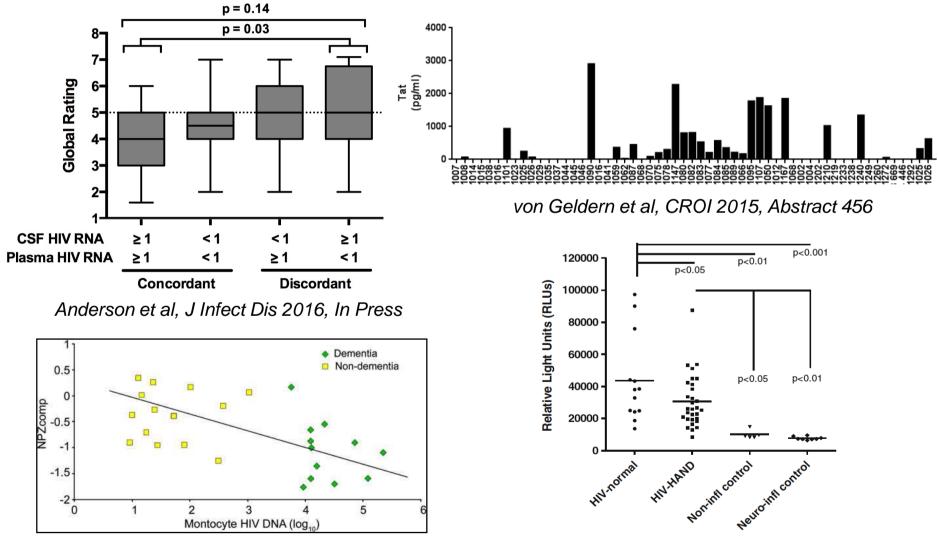
- Janssen
- Gilead Sciences

HIV Pathogenesis in the CNS

Kaul & Lipton, J Neuroimmune Pharmacol (2006) 1: 138–151

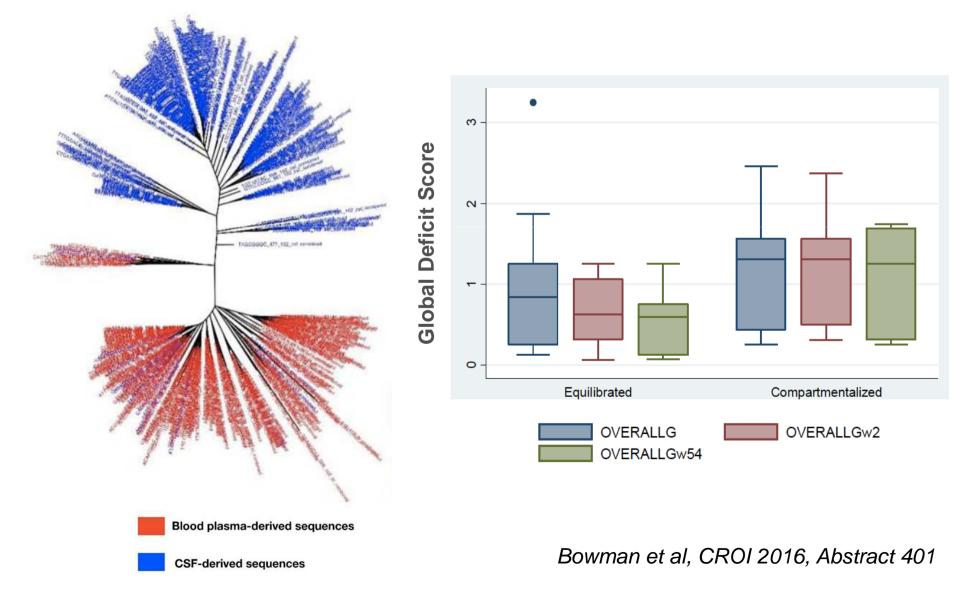

Severity and Daily Functioning Differentiate HAND Syndromes

	Acquired Impairment in ≥ 2 Cognitive Abilities	Interferes with Daily Functioning	No Cause Prior to HIV Diagnosis	No Current Strongly Confounding Condition
Asymptomatic Neurocognitive Impairment (ANI)		No		
Mild Neurocognitive Disorder (MND)		Mild		
HIV-Associated Dementia (HAD)	Marked	Marked		

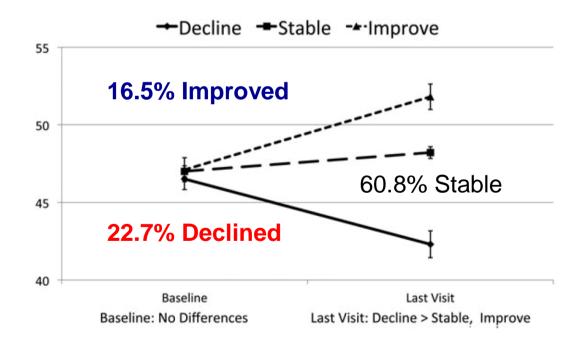

Antinori et al, Neurology 2007, 69: 1789-99

HIV RNA in CSF was Linked to HAND in the Mid-1990s

Slide Courtesy Justin McArthur

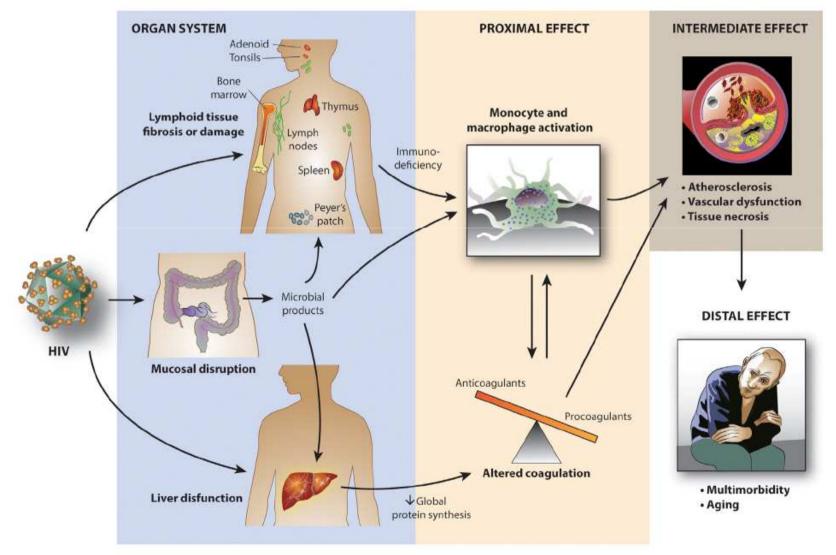

When HIV RNA is Suppressed, Other Viral Biomarkers Are Needed

Valcour et al, Neurology, 2009. 72(11):992-8


Bachani et al, J. Neurovirol. (2013) 19:82–88

HIV Compartmentalization in the CNS Is Associated With HAND

Neurocognitive Change in the Era of HIV Combination Antiretroviral Therapy: The Longitudinal CHARTER Study


 Analyzed incidence and predictors of neurocognitive change in 436 HIV+ adults who were assessed every 6 months over about 3 years on average (mean 35 months)

Heaton et al, Clinical Infectious Diseases 2015; 60(3):473–80

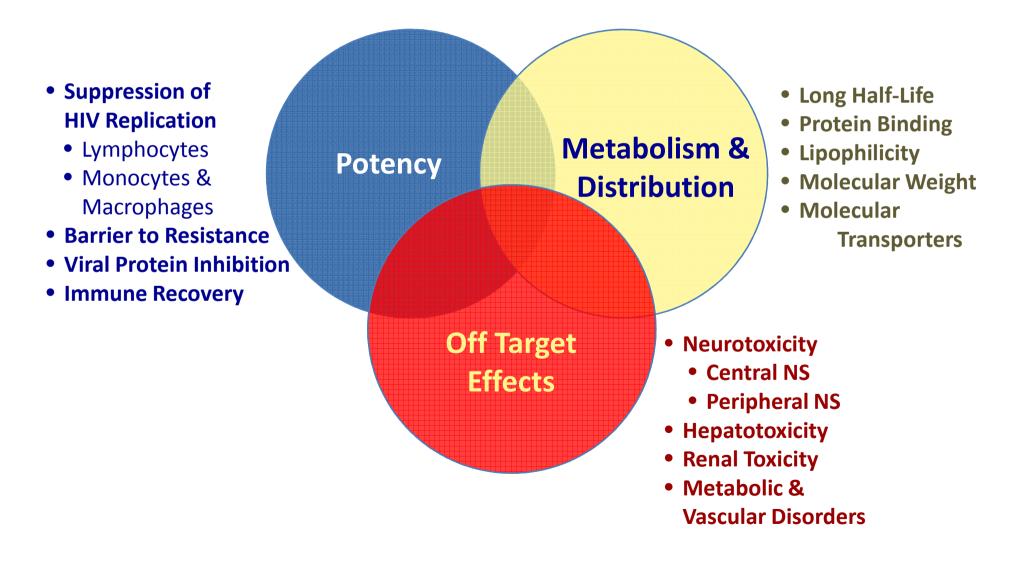
*p < 0.05, **p < 0.01, ***p < 0.0001 [†]CD4: per 100 cells; HIV RNA: per 1 log₁₀ c/mL; Albumin, Hematocrit, Total Protein, AST: Per 1 "unit"; Beck Depression: Per 1 unit; IQ: Per 1 unit; Education: Per year; Hepatic AST: Per 1 mg/dL; Total Protein: Per 1 g/dL ¹Included in the final multivarable model (in red)

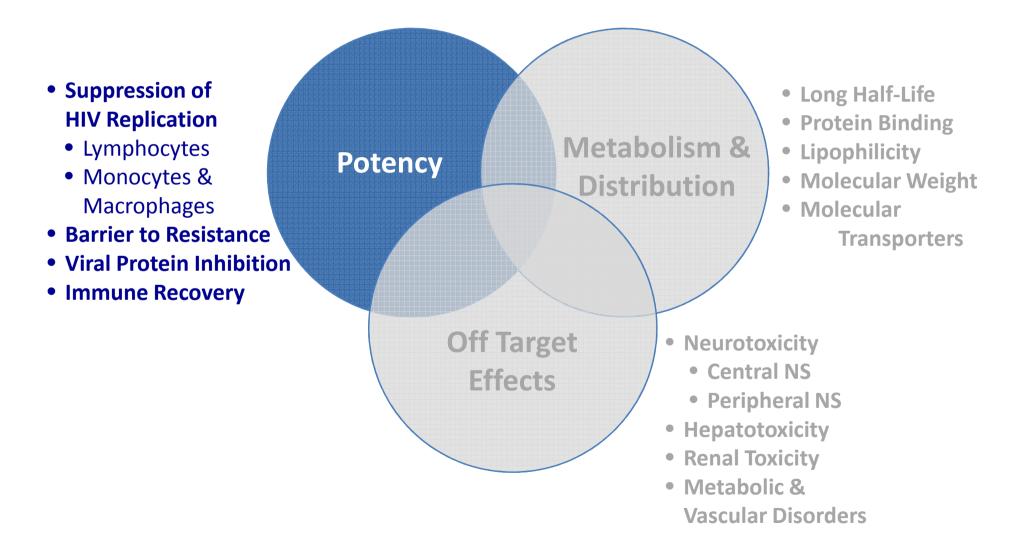
Inflammation Plays a Central Role in Unsuccessful Aging of HIV+ Adults

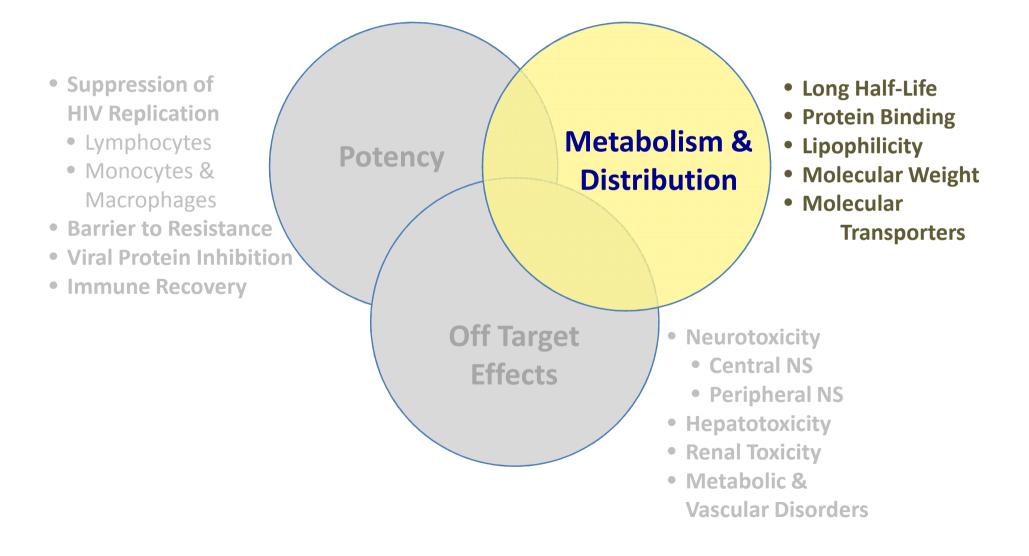
Deeks, Tracy, & Douek, Immunity 2013, 39: 633-45

Vascular and Metabolic Disease Increase Risk for Neurocognitive Impairment

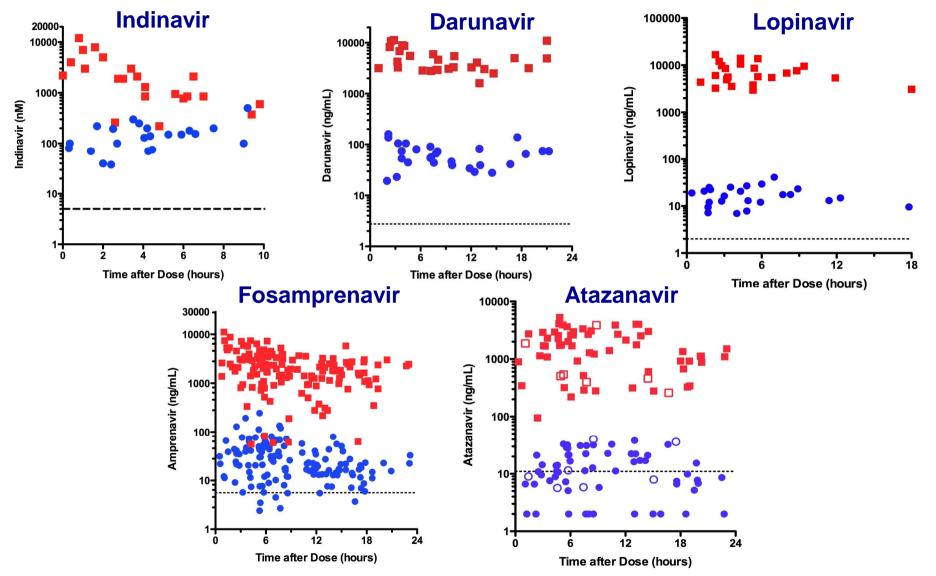
- 292 HIV+ adults in the START study
- Prior CVD was
 associated with NCI


Wright et al. Neurology 2010; 75: 864


- 130 HIV+ adults in the CHARTER study
- Diabetes and waist circumference were associated with NCI


McCutchan et al. Neurology 2012. 78: 485

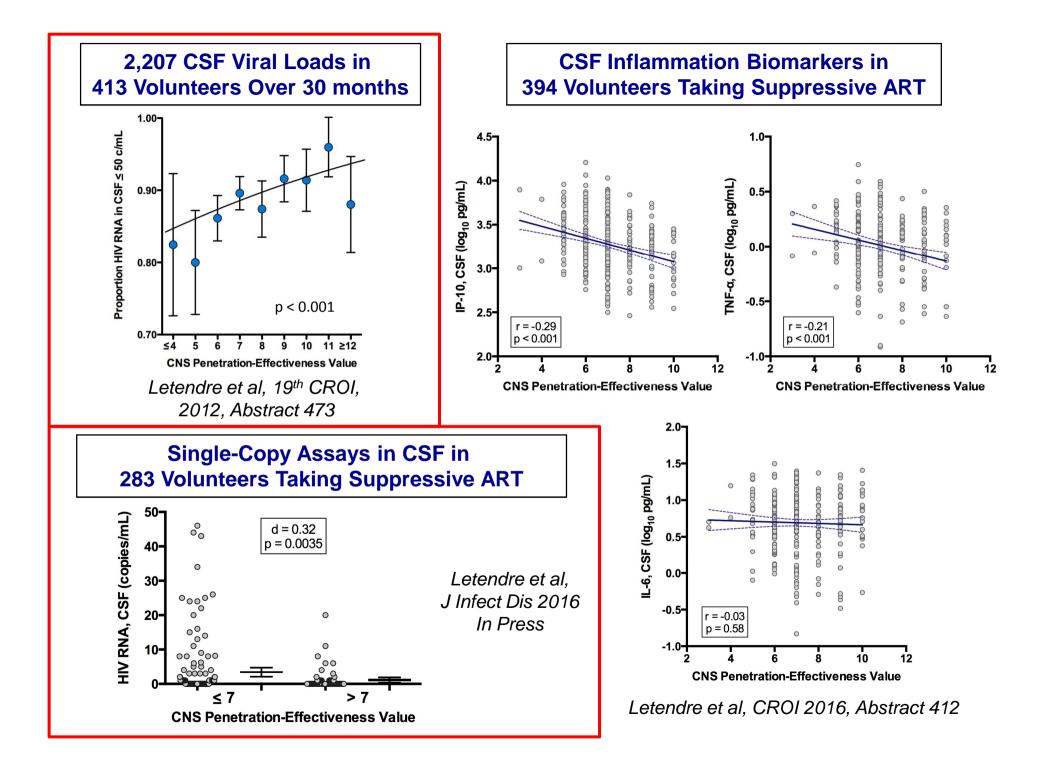
	Risk	OR	р
Prior CVD	Yes	6.2	0.01
Total cholesterol	Higher	1.1	0.06
AIDS	No	0.41	0.08
Race	Black	2.2	0.08


	Risk	OR	р
AIDS	Yes	49.6	0.01
Diabetes	Yes	17.6	0.07
Waist circumference	Larger	1.3	0.001
Triglycerides	Lower	0.32	0.09
BMI	Smaller	0.69	0.04

ART Pharmacokinetics in CSF and Blood

Best et al, AIDS 2009; 23: 83-87; Capparelli et al, AIDS 2005; 19:949–952; Letendre et al, 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, 2009; Letendre et al, 9th Intl Workshop on Clinical Pharmacology of HIV Therapy, 2009; Letendre et al, Antimicrobial Agents and Chemotherapy 2000, 44: 2173

CNS Penetration Effectiveness Estimates


	Much Above Average	Above Average	Average	Below Average
NRTIS	Zidovudine	Abacavir	Didanosine	Tenofovir
		Emtricitabine	Lamivudine	Zalcitabine
			Stavudine	
NNRTIS	Nevirapine	Delavirdine	Etravirine	
		Efavirenz	Rilpivirine	
Pls	Indinavir-r	Darunavir-r	Atazanavir	Nelfinavir
		Fosamprenavir-r	Atazanavir-r	Ritonavir
		Indinavir	Fosamprenavir	Saquinavir
		Lopinavir-r		Saquinavir-r
				Tipranavir-r
InSTIs	Dolutegravir	Raltegravir	Elvitegravir	
Entry/Fusion Inhibitors		Maraviroc		Enfuvirtide

Letendre SL, et al. Topics in Antiviral Medicine 2011, 19(4):137-42

CNS Penetration Effectiveness Estimates

	4	3	2	1
NRTIS	Zidovudine	Abacavir	Didanosine	Tenofovir
		Emtricitabine	Lamivudine	Zalcitabine
			Stavudine	
NNRTIS	Nevirapine	Delavirdine	Etravirine	
		Efavirenz	Rilpivirine	
Pls	Indinavir-r	Darunavir-r	Atazanavir	Nelfinavir
		Fosamprenavir-r	Atazanavir-r	Ritonavir
		Indinavir	Fosamprenavir	Saquinavir
		Lopinavir-r		Saquinavir-r
				Tipranavir-r
InSTIs	Dolutegravir	Raltegravir	Elvitegravir	
Entry/Fusion Inhibitors		Maraviroc		Enfuvirtide

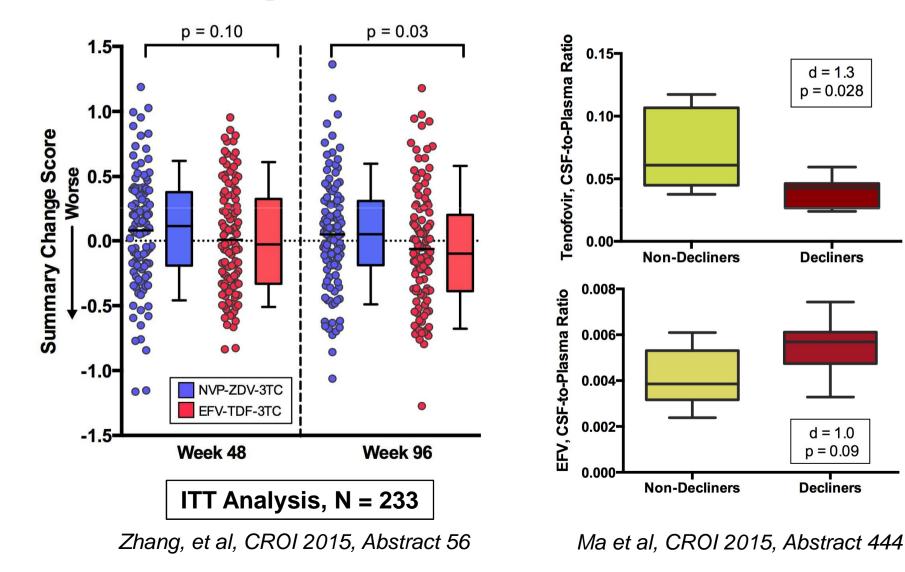
Letendre SL, et al. Topics in Antiviral Medicine 2011, 19(4):137-42

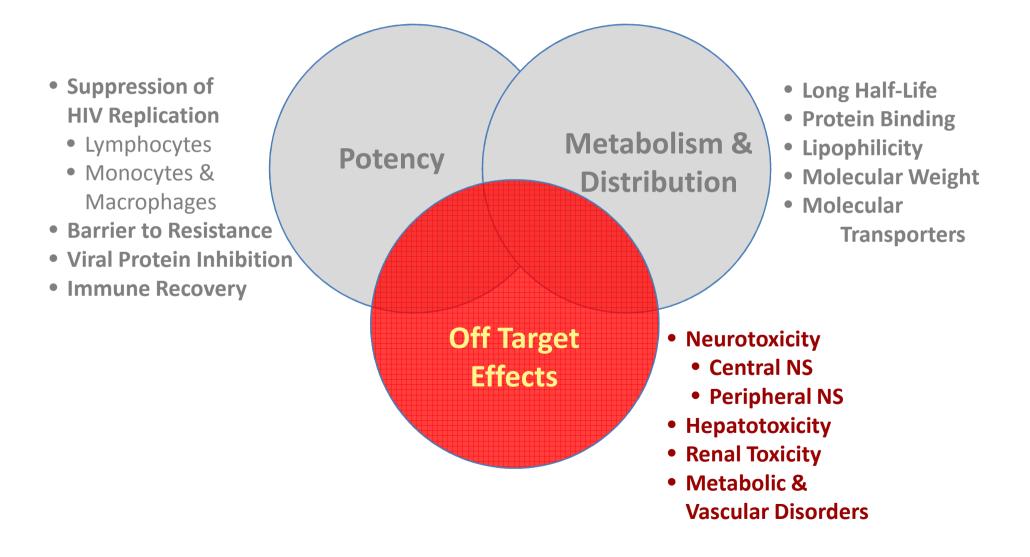
		Ν	NP	Duration	Principal Finding	Notes
Ciccarelli ¹	C-S	101	С	-	Beneficial	2010 version stronger than 2008 version
Fabbiani ²	C-S	215	С	-	Beneficial	Adjusted CPE using GSS
Casado ³	C-S	69	В	-	Beneficial	Beneficial if nadir CD4 < 200
Vassallo ⁴	L	96	С	22 months	Beneficial	~25% were not virologically suppressed
Cross ⁵	L	69	С	1 year	No association	Binary transformation only
Ghate ⁶	L	92	С	1 year	Beneficial	Benefit on working memory
Carvalhal ⁷	C-S	417	С	-	Beneficial	Benefit with 3-drug regimens
Smurzynski ⁸	L	2,636	В	4.7 years	Beneficial*	Benefit with > 3 ART drugs
Ellis ⁹	RCT	49	С	16 weeks	No association	Benefit when HIV RNA < 50
Wilson ¹⁰	C-S	118	В	-	Detrimental on 2 tests	Binary transformation only Substance users only
Kahouadji ¹¹	C-S	93	В	-	Detrimental on 1 test	Methodological flaws
Caniglia ¹²	L	61,938	Ν	~3 years	Detrimental (no tests)	Absolute risk 1.1% vs. 0.9%

C-S = Cross-sectional, L = Longitudinal, RCT = Randomized clinical trial, C = Comprehensive, B = Brief, N = None

¹Ciccarelli et al, Antiviral Therapy 2013, 18: 153-160; ²Fabbiani et al, Antiviral Therapy 2014, PMID: 25516553; ³Casado et al, J Neurovirol 2014, 20: 54-61; ⁴Vassallo et al, AIDS 2014, 28(4):493-501; ⁵Cross et al, S Afr Med J 2013;103(10):758-762; ⁶Ghate et al, J Neurovirol 2015, PMID: 25750072; ⁷Carvalhal et al, J Neurovirol 2015; ⁸Ellis et al, Clin Infect Dis. 2014;58(7):1015-22; ⁹Ellis et al, Clin Infect Dis. 2014;58(7):1015-22; ¹⁰Wilson et al, J Clin Experim Neuropsych 2013, 35:915-25, ¹¹Kahouadji et al, HIV Medicine 2013, 14: 311-5; ¹²Caniglia et al, Neurology 2014;83:1

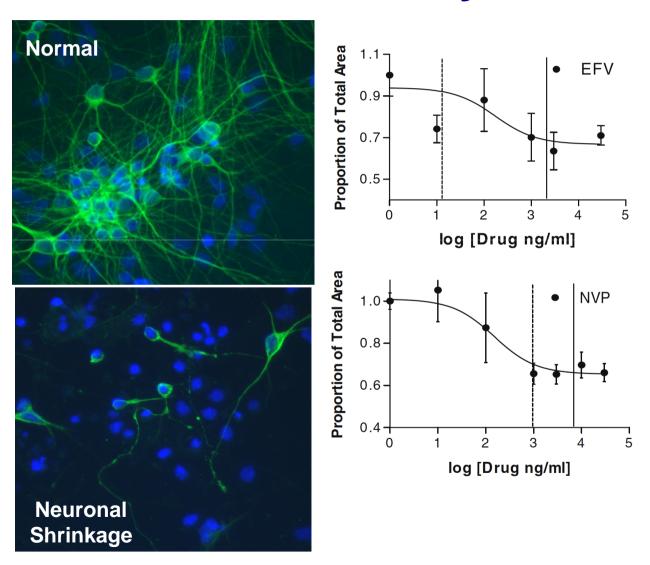
Cognitive Decline May Be Linked to Drug Distribution into CSF

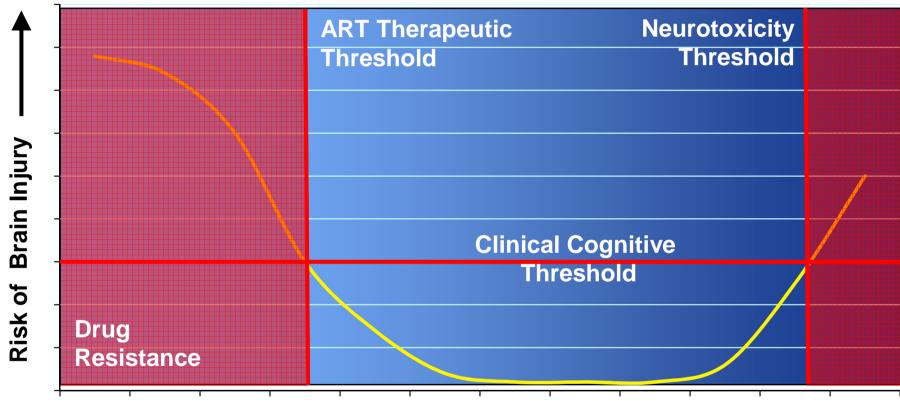

d = 1.3 p = 0.028


Decliners

d = 1.0

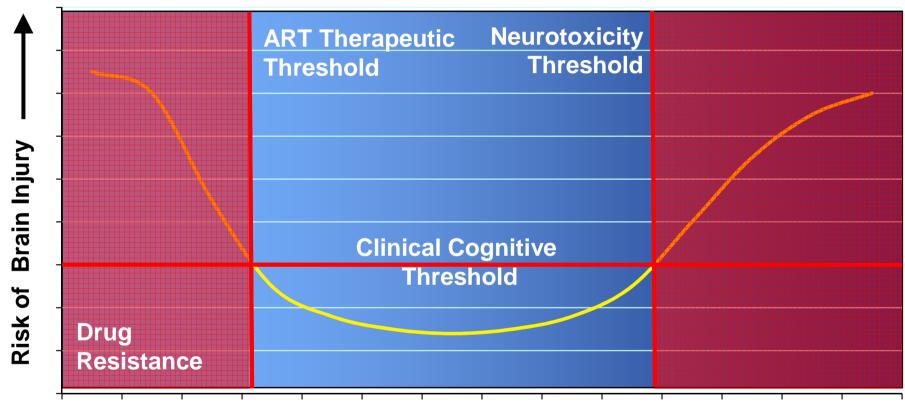
p = 0.09


Decliners


Neurotoxicity in Cortical Neuronal Cell Culture System

- Exposed cell cultures to increasing drug concentrations
- At least mild neuronal injury was seen with all drugs

Robertson et al, J Neurovirol 2012, 18: 388-299


CNS Therapeutic Window

ART Concentrations in the CNS ——

CNS Therapeutic Window

ART Concentrations in the CNS

Acknowledgements & Conflicts Study Volunteers

UC San Diego

- Igor Grant
- Ronald J. Ellis •
- Robert Heaton •
- J. Allen McCutchan \bullet
- **Brookie Best** •
- Edmund Capparelli Debra Rosario lacksquare
- Cris Achim •
- Florin Vaida •

CHARTER or NNTC

- **David Clifford** •
- Justin McArthur •
- Ned Sacktor •
- Ann Collier
- David Clifford •

- Tom Marcotte
- **Davey Smith**
- David Moore
- Jennifer Marquie
- Eliezer Masliah
- Mariana Cherner
- Steven P. Woods
- Christina Marra
- Susan Morgello
- **David Simpson**
- Ben Gelman
- Donald Franklin

National Institutes of Health

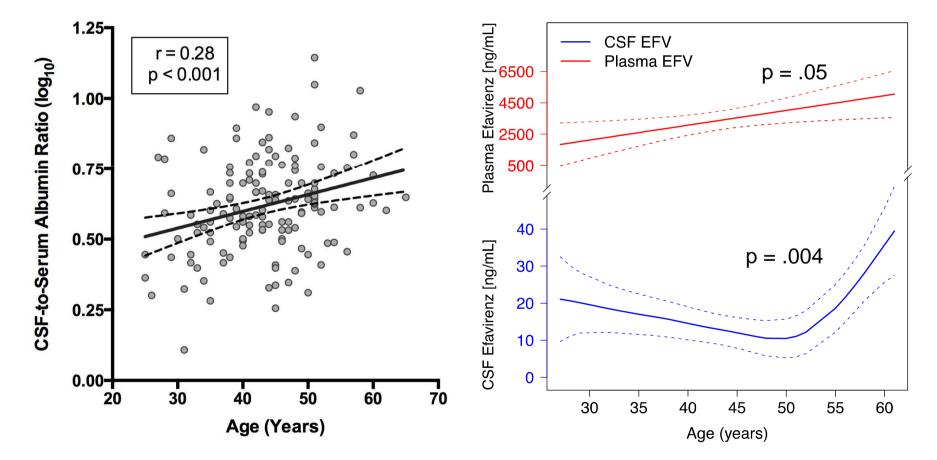
- ...Mental Health
- ...Drug Abuse
- ...Allergy and Infectious Diseases

Industry

- **Gilead Sciences**
- Janssen
- Merck & Co., Inc.
- ViiV Healthcare

Other Signs of ART Neurotoxicity Have Been Accumulating

Efavirenz is Associated with HAND

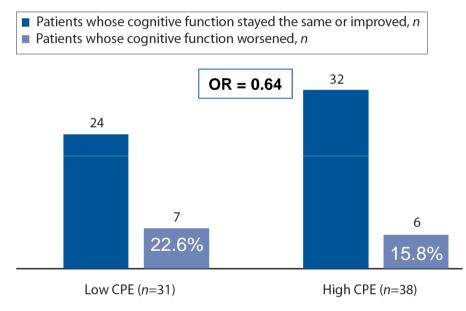

Risk Factor	Odds Ratio	P Value
Age (per 10 years)	0.83	0.29
Education (per 1 year)	0.85	0.002
Non-Italian Born	3.5	0.056
Efavirenz use	4.0	0.008

Ciccarelli et al, Neurology 2011, 76: 1403

Soontornniyomkij et al, AIDS 2014, 28:1297–1306

Protease Inhibitors are Associated Cerebral Small Vessel Disease

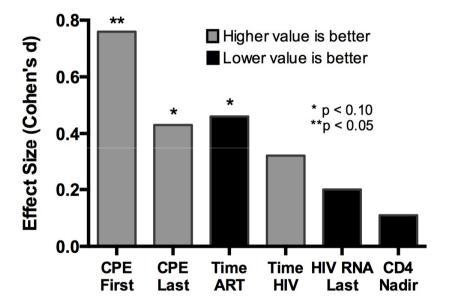
Blood-Brain Barrier Permeability Increases with Age and may Increase Drug Distribution into the CNS



Letendre et al, 18th CROI, 2011, Abstract 408

Croteau et al, 19th CROI, 2012, Abstract 592

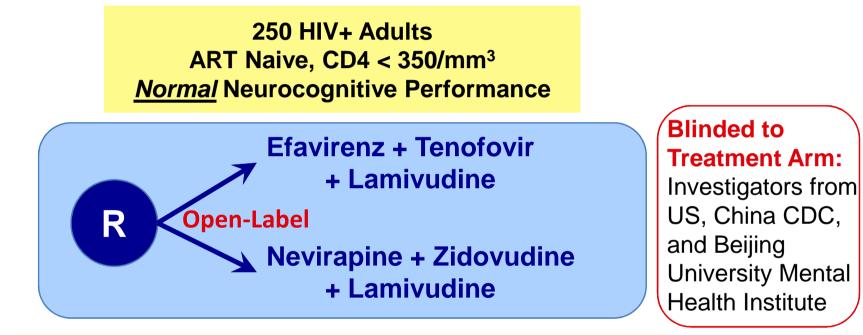
Similar Effect Sizes in 2 Observational Studies but Different Conclusions


South Africa

Cross et al, S Afr Med J 2013;103(10):758-762 Odds ratio is calculated from data in the manuscript

N = 69

France

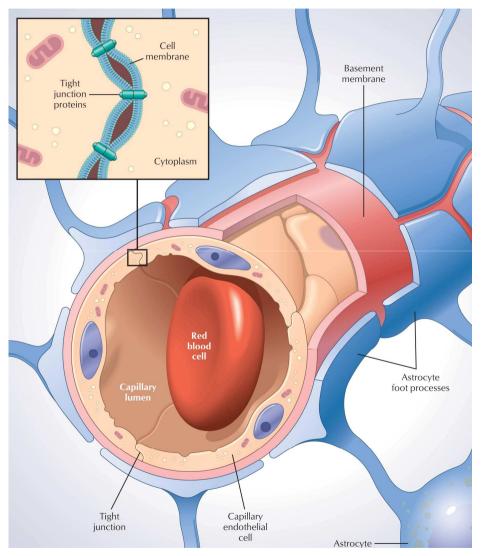


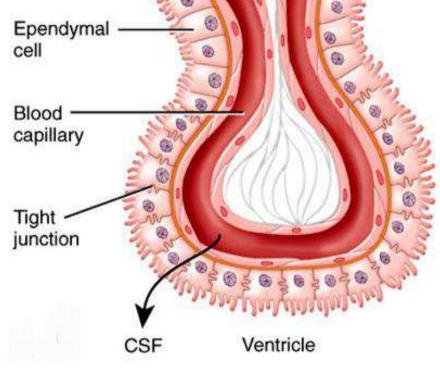
Vassallo et al, AIDS 2014, 28(4):493-501 Graph is adapted from Table 2

Odds ratios from multivariable regression:

- Initial (first) CPE: 0.54
- End-of-follow-up (last) CPE: 0.65

Randomized Clinical Trial of CNS Penetrating ART to Prevent HAND

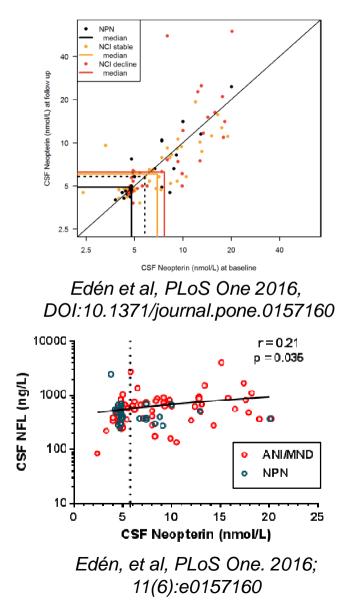


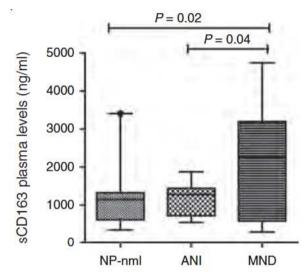

<u>Follow-up</u>: 96 Weeks at 2 Hospitals in Beijing Safety Assessments & Data Safety Monitoring Board Standardized Neurocognitive Testing Functional Assessments

Zhang et al, CROI 2015, Abstract 56

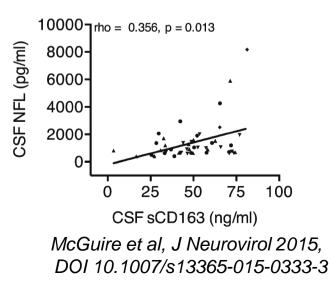
Blood-Brain Barrier

Blood-CSF Barrier

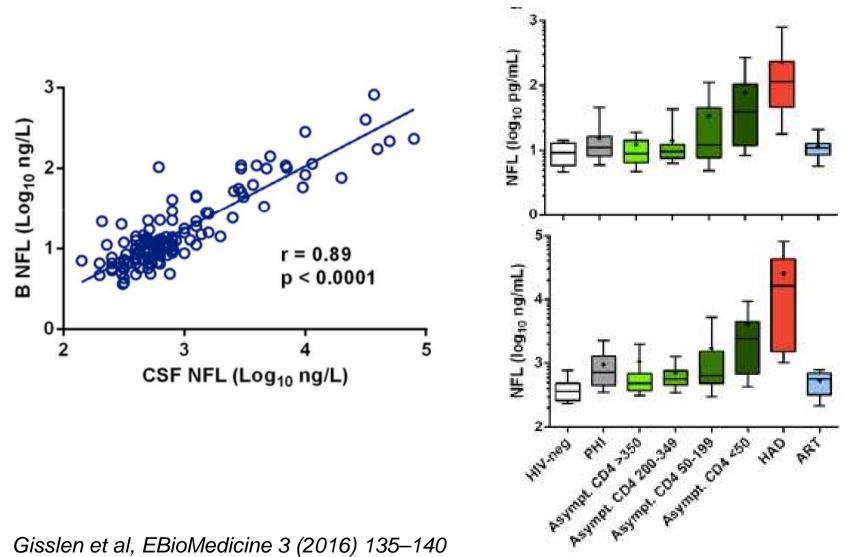




Choroid Plexus

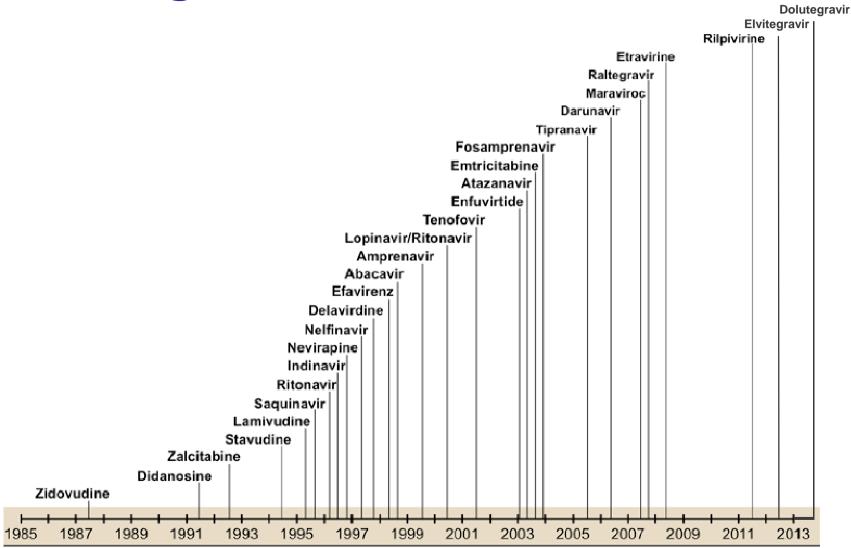

Graphic Licensed from NetterImages

Macrophage Activation during ART is Another Contributor to HAND



Burdo et al, AIDS 2013, 27:1387-1395

Neurofilament-Light Can Now Be Measured in Blood


Updated research nosology for HIVassociated neurocognitive disorders

	Acquired Impairment in ≥ 2 Cognitive Abilities	Interferes with Daily Functioning	No Cause Prior to HIV	No Current Strongly Confounding Condition
Asymptomatic Neurocognitive Impairment (ANI)	\checkmark	Νο	~	•
Mild Neurocognitive Disorder (MND)	\checkmark	Mild	\checkmark	
HIV-Associated Dementia (HAD)	Marked	Marked		

Antinori et al, Neurology 2007, 69: 1789-99

Rapid Development of Antiretroviral Drugs Since the Mid-1990s

http://depts.washington.edu/hivaids/images/arvrx/arvrx_c2_d03.png

Controversies in HIV-associated neurocognitive disorders

Sam Nightingale, Alan Winston, Scott Letendre, Benedict D Michael, Justin C McArthur, Saye Khoo, Tom Solomon

Lancet Neurol 2014; 13: 1139–51

Some ART drugs are more effective in the CNS than others

For

- ART drugs differ in the extent to which their CSF concentrations exceed HIV inhibitory concentrations
- Drugs with better CPE values are associated with undetectable HIV RNA in CSF
- Drugs with better CPE values are associated with better cognitive function in some studies
- CSF viral escape has been linked to regimens with worse CPE values

Against

- CPE values are largely based on pharmacokinetics in CSF, which might not accurately reflect pharmacokinetics in brain
- Drugs with better CPE values are associated with no benefit or worse cognitive function in some studies
- In vitro studies have shown that some ART drugs are neurotoxic
- CSF viral escape is uncommon

Randomized Clinical Trial of ART to Prevent HAND

250 HIV+ Adults ART Naive, CD4 < 350/mm³ **Normal Neurocognitive Performance**

Treatment Arm: Investigators from US, China CDC, and Beijing University Mental Health Institute

Follow-up: 96 Weeks at 2 Hospitals in Beijing Safety Assessments & Data Safety Monitoring Board **Standardized Neurocognitive Testing Functional Assessments**

Hypothesis: Neurocognitive decline will be greater in the EFV-TDF-3TC arm

Zhang et al, CROI 2015, Abstract 56

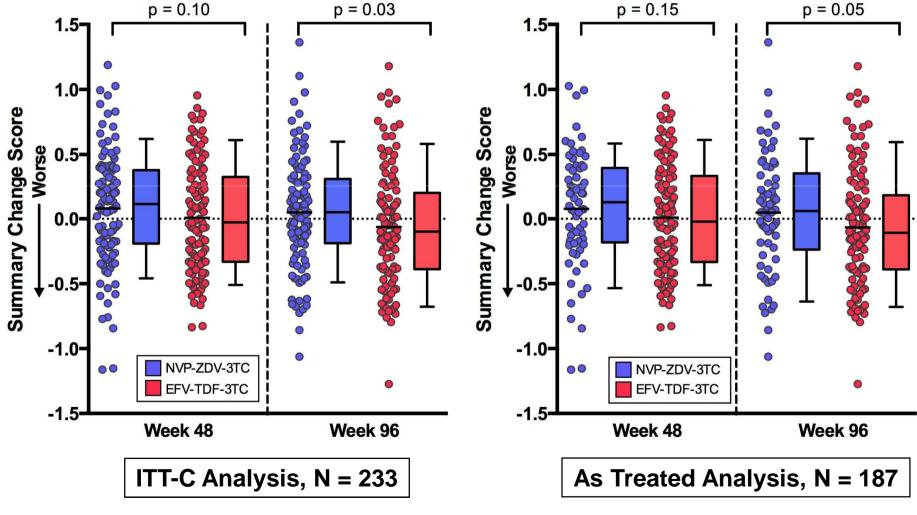
Arms were Comparable at Baseline

	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	128	122	-
Demographic Characteristics			
Age (Years)	32.9 (7.7)	31.9 (8.3)	0.31
Sex (Men)	124 (97%)	122 (100%)	0.12
Ethnicity (Han)	121 (94.5%)	116 (95.1%)	0.84
Education (Years)	11.6 (3.6)	11.8 (3.9)	0.72
Body Mass Index	22.3 (2.9)	21.8 (2.5)	0.16
Disease Characteristics			
AIDS Diagnosis	42 (32.8%)	39 (32.0%)	0.89
HIV RNA, Plasma (log ₁₀ c/mL)	4.2 (0.8)	4.2 (0.9)	0.78
CD4+ T-cells (/mm ³)	235.1 (89.8)	222.1 (83.6)	0.24
CD8+ T-cells (/mm ³)	823.6 (355.7)	836.2 (439.0)	0.80
HCV Seropositive	3 (2%)	3 (2%)	0.99
HBV Surface Antigen	1 (0.8%)	1 (0.8%)	0.99

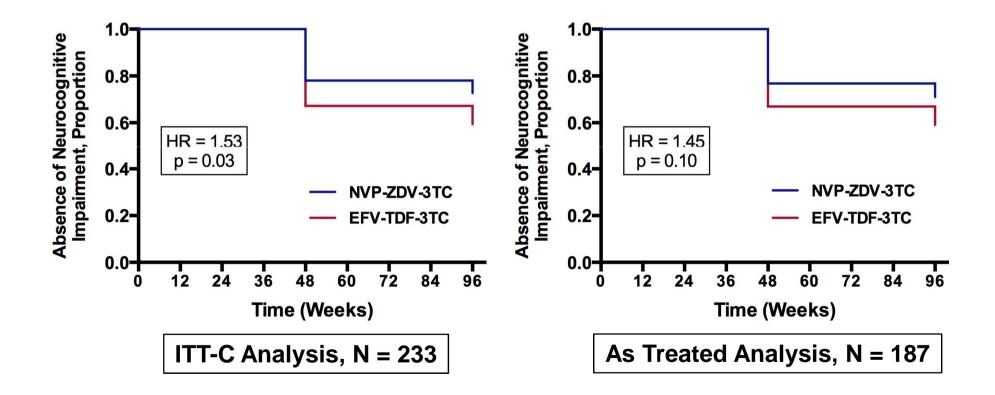
*Values are either mean (SD), median [IQR], or number (%)

On Treatment, Indicators of Antiviral Efficacy Were Comparable

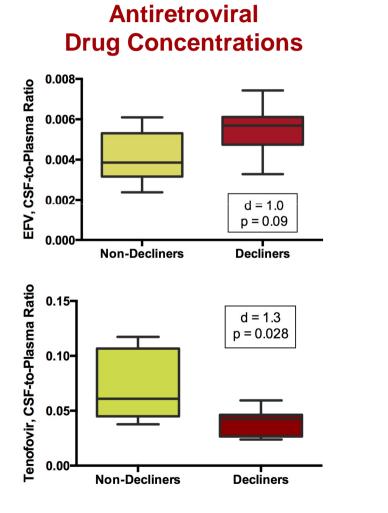
Week 48 (ITT-Completer)

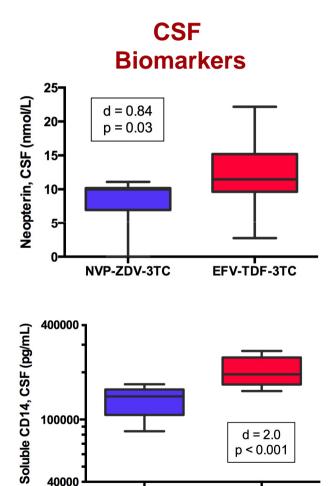

	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	114	119	-
HIV RNA, Plasma (No. (%) ≤ 50 c/mL)	103 (91.2%)	109 (91.6%)	1.00
CD4+ T-cells (/µL)	396.6 (158.0)	396.5 (153.4)	1.00
CD8+ T-cells (/µL)	789.4 (368.0)	760.5 (360.8)	0.54
100% Adherence in Past 4 Days	113 (99.1%)	119 (100%)	0.49

Week 96 (ITT-Completer)


	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	112	118	-
HIV RNA, Plasma (No. (%) ≤ 50 c/mL)	104 (92.0%)	112 (95.7%)	0.28
CD4+ T-cells (/µL)	447.2 (179.3)	483.8 (183.8)	0.13
CD8+ T-cells (/µL)	811.3 (322.4)	850.6 (408.7)	0.42
100% Adherence in Past 4 Days	112 (100%)	116 (100%)	1.00

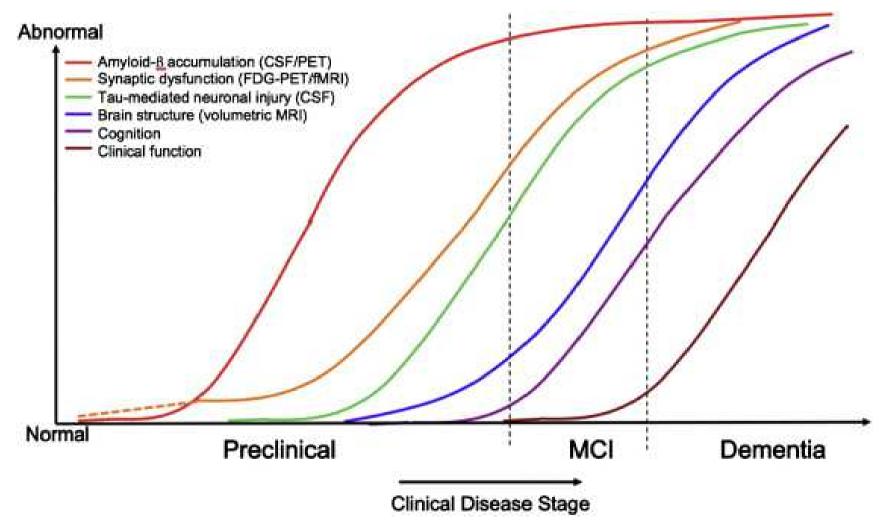
*Values are either mean (SD), median [IQR], or number (%)


EFV-TDF-3TC Was Associated with Greater Decline After 96 Weeks


EFV-TDF-3TC Was Associated with Shorter Time-to-Impairment

Nested Case-Control Study of 15 Decliners and 15 Non-Decliners

Ma et al, CROI 2015, Abstract 444


NVP-ZDV-3TC EFV-TDF-3TC

Baseline Characteristics

	Decline	Stable	Improve	
Number of visits	6.2 (1.1)	6.1 (1.2)	6.2 (1.2)	
Age (Years)	42.7 (8.4)	44.2 (8.7)	43.8 (7.5)	
Education (Years)	12.6 (2.6)	12.9 (2.4)	13.3 (2.4)	
Ethnicity (% White)	37%	44%	50%	
Sex (% Male)	72%	81%	86%	D < 1
Neuropsychiatric Comorbidity (% Contributing)	20%	8%	11%	D > S
Baseline Neurocognitive Impairment (%)	51%	45%	42%	
AIDS (%)	55%	62%	61%	
Current CD4+ Count (/µL)	433	467	432	
ART Use	68%	70%	72%	
HCV Seropositive (%)	30%	24%	25%	
HIV RNA, Plasma (% ≤ 50 c/mL on ART)	50%	56%	69%	l > D
HIV RNA, CSF (% ≤ 50 c/mL on ART)	70%	76%	92%	l > D,S

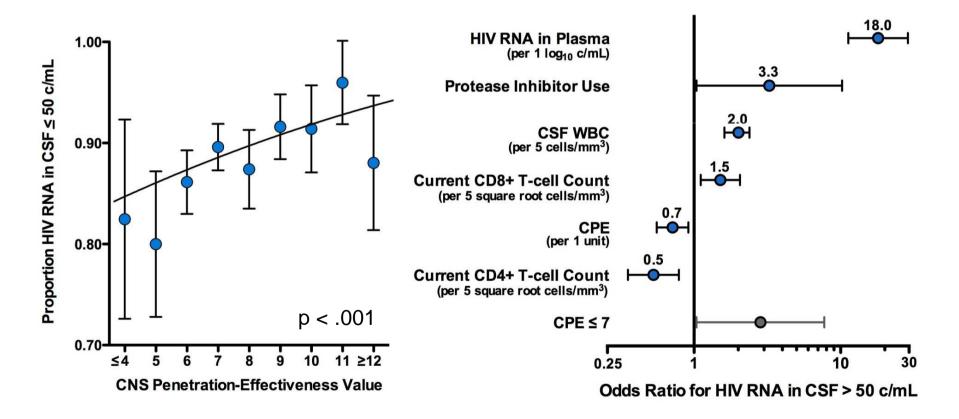
	_	Neurocognitive Impairment	Beck Depression Inventory	Apathy	Impulsivity	Sensation Seeking	HIV Transmission Risk	
Immune Response								
CXCL10	Plasma							
CXCL10	CSF				_			
sCD14	Plasma							
IL-16	CSF							
IL-6	Plasma							
MCP-1	Plasma							
IL-6	CSF	_						
sTNFR-II	Plasma							
Vascular								
ICAM-1	Plasma							
uPAR	Plasma							
uPAR	CSF							
MMP-7	Plasma							
MMP-7	CSF							
Claudin-1	Plasma							Positive
Claudin-1	CSF	_						
VCAM-1	Plasma							0
VCAM-1	CSF							
MMP-2	Plasma							
MMP-2	CSF							
PECAM-1	Plasma							
PECAM-1	CSF							≯
ZO-1	Plasma							iti i
ZO-1	CSF							6
Occludin	Plasma							<pre>////////////////////////////////////</pre>
TIMP-1	CSF							— v z
TIMP-2	Plasma							
TIMP-2	CSF							
VEGF	CSF							
Dxidative Stress								
Malondialdehyde	Plasma							
Malondialdehyde	CSF							
8-OHdG	CSF							
Protein Carbonyls	Plasma	-						
8-isoprostane	CSF							
Neuronal								
Neurofilament-Light	CSF							
Glutamate	CSF							
Aging								
Telomere Length								
mtDNA								

Biomarkers Identify a Preclinical Stage in Alzheimer's Disease

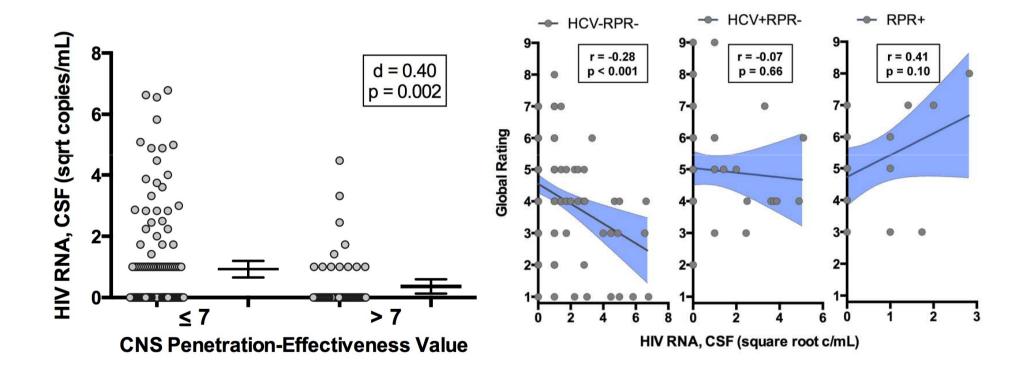
Sperling et al, Alzheimer's & Dementia 7 (2011) 280-292

Biological Classification of HAND?

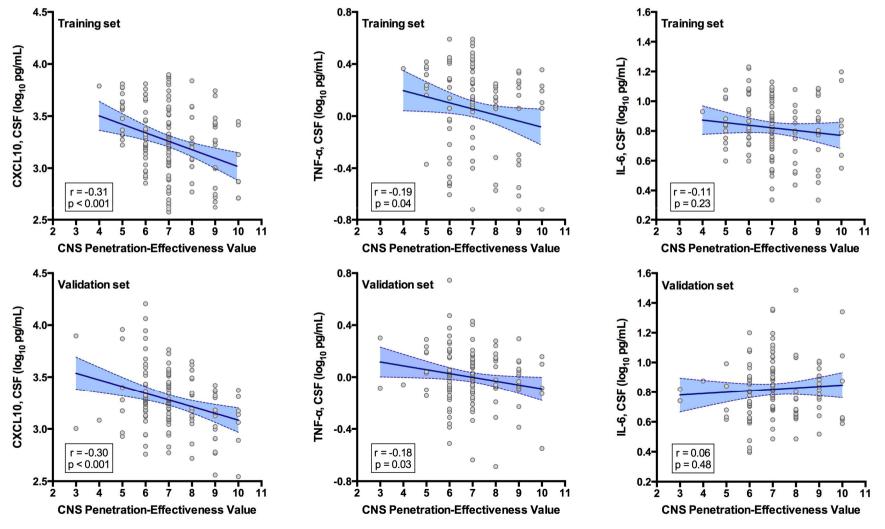
	Higher HIV DNA	Higher sCD163	Higher Neurofilament Light	Higher Neopterin	Alternative Diagnosis on Imaging
	Blood	Blood	Plasma	CSF	-
Asymptomatic Neurocognitive Impairment (ANI)	~	Νο	Νο	~	Νο
Mild Neurocognitive Disorder (MND)	•	~	Νο	~	Νο
HIV-Associated Dementia (HAD)	~~	~	\checkmark	~~	Νο


Additional challenges:

- Clinical standardization of assays
- Identification of clinically relevant cutpoints

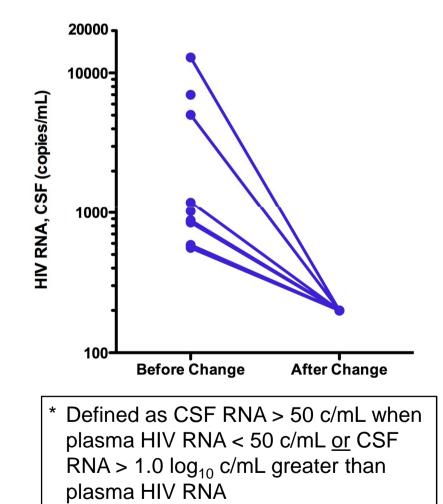

Higher CPE Values Correlate with Undetectable HIV RNA in CSF Over Time

2,207 CSF Viral Loads in 413 Volunteers in CHARTER


Letendre et al, 19th CROI, 2012, Abstract 473

Low-Level HIV RNA in CSF is Associated with Lower CPE Values

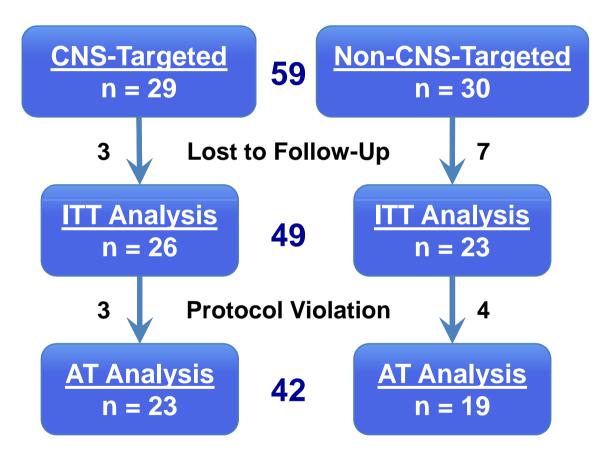
Anderson, et al, J Infect Dis 2016, In Press


Higher CPE Values Associated with Lower Levels of Some Biomarkers

Anderson, et al, CROI 2016, Abstract 412

Case Series from Paris Raised Concerns About CSF Viral Escape

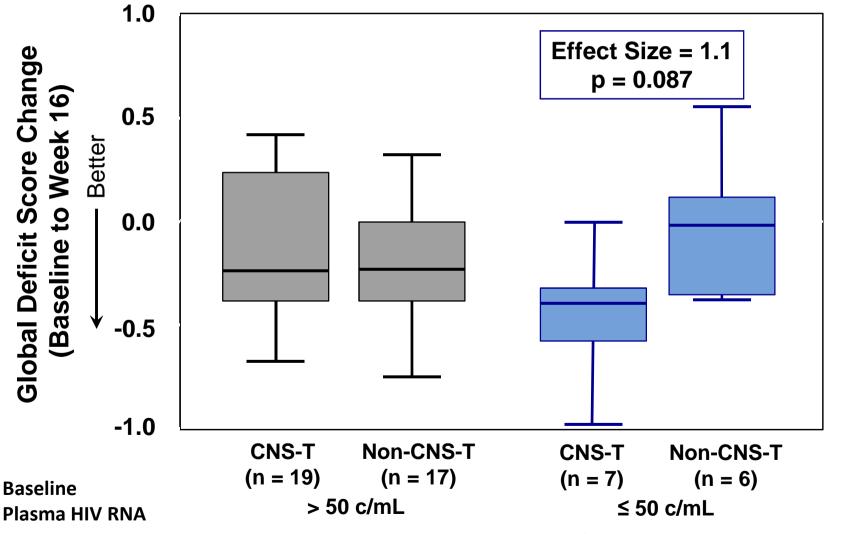
- 11 patients with new neurological symptoms and CSF viral escape* during ART
- Drug resistance mutations in CSF in 7 of 8
- ART was modified
 - Drug resistance testing and estimated drug CNS distribution
- All patients clinically improved with reduction of HIV RNA in CSF


Canestri et al, Clinical Infectious Diseases 2010, 50: 773–778

ART Characteristics Are Associated with CSF Viral Escape

First Author	Sample Size	Percent with CSF VE	ART Correlates
Rawson ¹	142	21%	↓ CPE
Cusini ²	60	6.7%	↓ CPE
Dravid ³	1236	1.0%	↓ CPE
Edén ⁴	69	11.0%	Not ZDV
Perez-Valero ⁵	1,264	4.4%	PI/r Use ATV Use
Pinnetti ⁶	303	10.6%	ATV/r Use ABC+3TC Use
Edén ⁷	373	10.0%	Not Noted
Average		9.2%	

¹Rawson et al, Journal of Infection (2012) 65, 239e245; ³Cusini et al, J Acquir Immune Defic Syndr 2013, 62:28–35; ³Dravid et al, EACS Conference, 2015; ⁴Eden et al, J Infect Dis 2010, 2010; 202(12):1819–1825; ⁵Perez-Valero et al, J Intl AIDS Soc 2012, 15(Suppl 4):18189; ⁶Pinnetti et al, CROI 2014, Abstract 443; ⁷Eden et al, CROI 2014, Abstract 445 <u>Published case series/reports of CSF Viral Escape</u>: Canestri et al, CID 2010; Peluso et al, AIDS 2012; Khoury et al, J Neurovirol 2013


Cognitive Intervention Trial 2: Only Enrolled Half of Planned 120

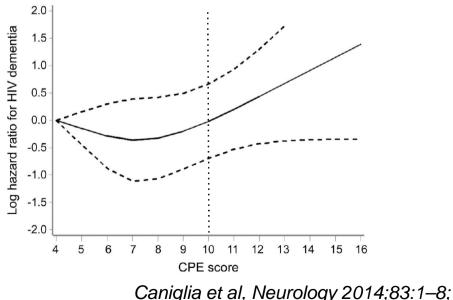
ITT = Intent-to-treat AT = As treated

Ellis et al, Clin Infect Dis. 2014; 58(7):1015-22

Possible Benefit in Those Who Changed ART with Viral Suppression

Ellis et al, Clin Infect Dis. 2014; 58(7):1015-22

The relationship of CPE to HIV dementia


Slain by an ugly fact?

Design

- Data from 61,938 patients from 9 European and U.S. cohorts
- Evaluated prior to ART initiation between 1998 and 2013
- "Intent-to-treat"-like analysis based on <u>initial regimen</u>
- CPE transformed into 3 categories: ≤ 7, 8-9, ≥ 10

Major Findings

- 235 "HAD" events in 259,858 person-years of follow-up
 - 1 per 1,106 person-years
- "High" CPE group had a 74% increased hazard ratio of "HAD"

Berger & Clifford, Neurology 2014;83:1–2

The relationship of CPE to HIV dementia

Slain by an ugly fact?

- Enriched for HAD by excluding 4 cohorts that had no HAD events
- Did not use standardized assessments for diagnosing "HAD"
 - "...diagnostic procedures that reflect standard clinical practice"
- Between-group difference in absolute risk is not clinically meaningful: 1 "HAD" case per > 4,500 person-years of follow-up
- Did not account for influential factors:
 - <u>Changes in ART over time</u>: 68% changed their initial regimen during observation
 - <u>Non-HIV causes of neurocognitive disease</u>: psychiatric disease, substance use, co-infections
- Categorical transformation of CPE is unusual
 - Only 8.8% were in the "high CPE" group (≥ 10)
 - No statistically significant association was found when CPE was analyzed continuously or as a 4-category variable

Ideal Characteristics of Analyses of CNS Effectiveness of ART

- Randomized and longitudinal
- Adequate power and follow-up duration
- Standardized and comprehensive assessments
- Similar drug potency and toxicity
 - For those that focus on CPE, regimens should have the same number of drugs

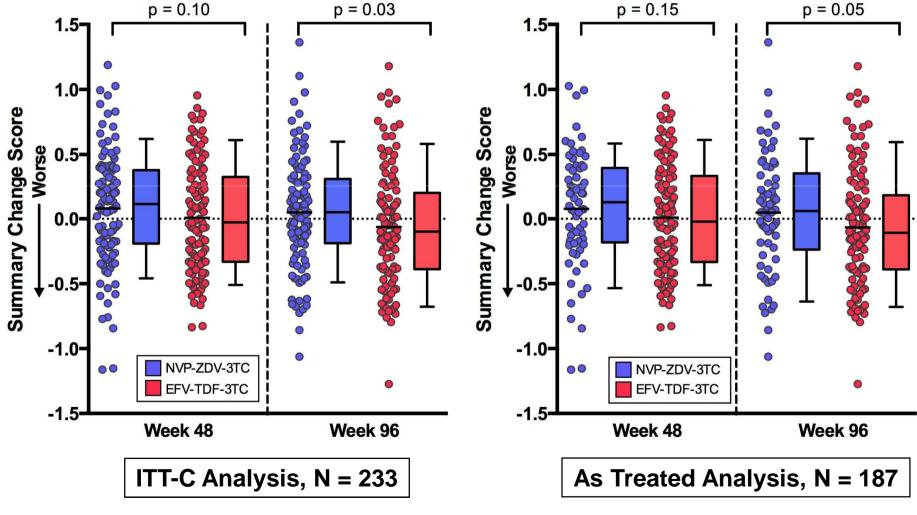
Arms were Comparable at Baseline

	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	128	122	-
Demographic Characteristics			
Age (Years)	32.9 (7.7)	31.9 (8.3)	0.31
Sex (Men)	124 (97%)	122 (100%)	0.12
Ethnicity (Han)	121 (94.5%)	116 (95.1%)	0.84
Education (Years)	11.6 (3.6)	11.8 (3.9)	0.72
Body Mass Index	22.3 (2.9)	21.8 (2.5)	0.16
Disease Characteristics			
AIDS Diagnosis	42 (32.8%)	39 (32.0%)	0.89
HIV RNA, Plasma (log ₁₀ c/mL)	4.2 (0.8)	4.2 (0.9)	0.78
CD4+ T-cells (/mm ³)	235.1 (89.8)	222.1 (83.6)	0.24
CD8+ T-cells (/mm ³)	823.6 (355.7)	836.2 (439.0)	0.80
HCV Seropositive	3 (2%)	3 (2%)	0.99
HBV Surface Antigen	1 (0.8%)	1 (0.8%)	0.99

*Values are either mean (SD), median [IQR], or number (%)

On Treatment, Indicators of Antiviral Efficacy Were Comparable

Week 48 (ITT-Completer)


	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	114	119	-
HIV RNA, Plasma (No. (%) ≤ 50 c/mL)	103 (91.2%)	109 (91.6%)	1.00
CD4+ T-cells (/µL)	396.6 (158.0)	396.5 (153.4)	1.00
CD8+ T-cells (/µL)	789.4 (368.0)	760.5 (360.8)	0.54
100% Adherence in Past 4 Days	113 (99.1%)	119 (100%)	0.49

Week 96 (ITT-Completer)

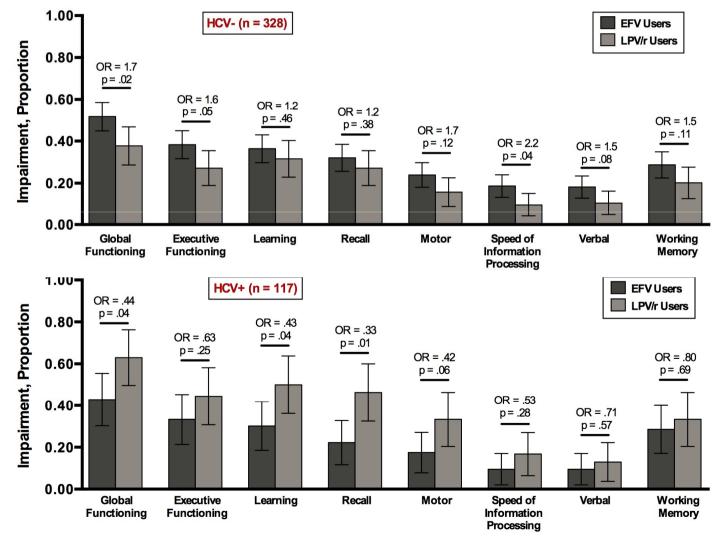
	NVP-ZDV-3TC	EFV-TDF-3TC	P Value
Sample Size	112	118	-
HIV RNA, Plasma (No. (%) ≤ 50 c/mL)	104 (92.0%)	112 (95.7%)	0.28
CD4+ T-cells (/mm ³)	447.2 (179.3)	483.8 (183.8)	0.13
CD8+ T-cells (/mm ³)	811.3 (322.4)	850.6 (408.7)	0.42
100% Adherence in Past 4 Days	112 (100%)	116 (100%)	1.00

*Values are either mean (SD), median [IQR], or number (%)

EFV-TDF-3TC Was Associated with Greater Decline After 96 Weeks

Other Drug Characteristics May Influence the Effects of ART on the CNS

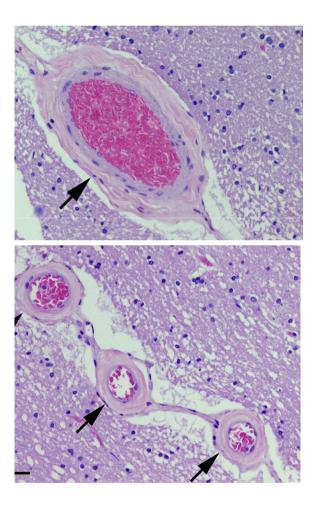
- Distribution of ART drugs into the brain
 - CSF may not be equivalent to brain
- Timing of ART initiation
 - ART initiated at higher CD4 counts may better prevent HAND


- Toxicity
 - Directly in the brain
 - Indirectly, e.g., vascular disease
- Efficacy in different cell types
 - Macrophages are the target cells in the brain

Host factors

- Aging changes in drug metabolism & distribution
- Blood-brain barrier permeability

Protease Inhibitors May be More Neurotoxic with HCV Co-infection


Ma et al, J. Neurovirol. (2016) 22:170-178

Neurotoxicity Screening of ART Drugs With Human Neurons

		Mitochond			ssay	1	Veurite	eurite Outgrowth Assay			
		MMP	ROS	Cyt	otx	<u>Out</u>	<u>growth</u>	Ret	raction	Cytotx	
					le	ength	branch	length	branch		
	Abacavii	-	1.6	1.1	-0.2	1	.1 1.	0 (0.1 -0.	2 -0.6	
NRTI	Tenofovii		1.6	0.0	-0.5	0	.5 0.	5 -:	1.6 -1.	0 0.4	
NNRTI	Efavirenz	1	.3.6	0.5	-6.8	2	.9 1.	1	3.3 -0.	6 -2.0	
	Rilpivirine		-6.2	1.0	-0.7	1	.3 1.	o <mark></mark> :	2.8 -1.	9 -2.2	
INSTI	Elvitegravii	-1	.0.4	2.1	-1.5	0	.8 0.	5 -:	1.5 -1.	2 -1.7	
	Dolutegravii		1.0	0.5	-0.5	3	.2 4.	D –(0.5 0.	3 -0.	
PI	Atazanaviı	· .	-2.4	1.9	-0.5	1	4 1.	0 -(0.5 -1.	3 -0.	
	Darunavii		2.1	0.4	-0.4	1	.2 0.	8 (0.0 -0.	3 -0.8	
DK anhancar	Ritonaviı	· .	-5.2	2.8	-0.4	0	.2 0.	3 -:	1.7 -0.	5 -0.8	
PK enhancer	Cobicstat	-1	.2.0	7.7	1.0	1	.1 1.	1 -:	1.6 -2.	4 -1.7	
Control	Menadione	-1	.2.0	10.6	-20.9						
Control	Staurosporine	2				7.	.1 9.	6(0.9 0.	2 -1.2	
	BIC					-2	.2 -0.	4 -∹	3.6 -2.	2 0.0	
									N	lax. Z-so	
									-5		

Hinckley et al, CROI 2016, Abstract 395

Protease Inhibitor Use is Associated with Cerebral Small Vessel Disease

- Protease inhibitors were associated with cerebral small vessel disease at autopsy
 - <u>Mild</u>: **OR 2.8** (95% CI 1.03–7.9)
 - <u>Moderate-severe</u>: OR 2.6 (95% CI 1.03–6.7)
- Mild cerebral small vessel disease was associated with neurocognitive impairment

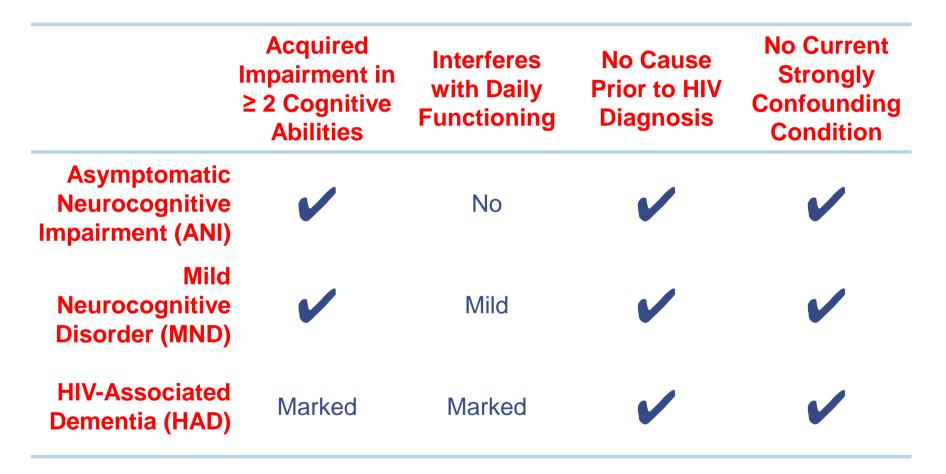
– OR 4.8

(95% CI 1.1-21.2)

Controversies in HIV-associated neurocognitive disorders

Sam Nightingale, Alan Winston, Scott Letendre, Benedict D Michael, Justin C McArthur, Saye Khoo, Tom Solomon

HAND is common in the era of effective ART


For

- Well powered, observational studies have found prevalence of up to 60% in HIV+ adults with access to ART
- Most patients have asymptomatic disease
- Some studies that found high prevalence used a thorough neurocognitive evaluation and matched control data
- Prevalence of cognitive impairment is high in subpopulations with few neuropsychiatric comorbidities

Against

- Prevalence estimates depend on the use of appropriate norms
 - Some studies did not have an appropriate normative population
- Using current criteria, ~14% of those at the lower end of cognitive functioning in a normative population will be classified as impaired
 - HIV-related neuropathology is not necessarily the cause
- Some studies found patients taking long-term ART who do not have other conditions that affect cognitive function to be similar to HIV- adults

Severity and Daily Functioning Differentiate HAND Syndromes

Antinori et al, Neurology 2007, 69: 1789-99